

Standard Limited Assessment Report for Site 14, Quarters S

Zone B Charleston Naval Complex

North Charleston, South Carolina

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0092

March 2000

STANDARD LIMITED ASSESSMENT REPORT FOR SITE 14, QUARTERS S

ZONE B, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0092

MARCH 2000

PREPARED UNDER THE SUPERVISION OF:

PAUL CALLIGAN, P.G. TASK ORDER MANAGER TETRA TECH NUS, INC. TALLAHASSEE, FLORIDA DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA

APPROVED FOR SUBMITTAL BY:

hobluski

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed a Rapid Assessment for Site 14 which includes two underground storage tank (UST) systems for Quarters S Housing at Charleston Naval Complex (CNC) Zone B, in North Charleston, South Carolina. The USTs were used to store fuel oil for the boilers of Quarters S in the Naval housing area. Both 550-gallon steel USTs were removed in April 1998. The assessment was performed under the direction of the South Carolina Department of Health and Environmental Control Rapid Assessment guidance dated June 20, 1997, and approval letter dated April 7, 1999. After determining that all laboratory analytical results for groundwater and all but one analytical result for soil were below risk-based screening levels (RBSLs), the reporting format was reduced from a Rapid Assessment Report to a Standard Limited Assessment (SLA) report format. In addition, a Tier I and a Tier II Evaluation was performed for the chemical of concern (CoC) in soil which exceeded RBSL.

TtNUS performed the following actions during the Rapid Assessment:

- Reviewed available Navy documents to identify potential sources and receptors for petroleum hydrocarbons in the vicinity, to evaluate public and private potable wells, to locate utility line areas, to locate nearby surface water bodies, and to determine surface hydrology and drainage.
- Reviewed the previously prepared Underground Storage Tank Assessment Report for USTs S1 and S2 to determine boring locations and monitoring well placement.
- Conducted site survey to identify utilities and to construct a site plan.
- Installed nine shallow soil borings 8 to 12 feet below land surface (bls) and one deep vertical delineation soil boring to a depth of 30 feet bls using direct push technology (DPT).
- Collected soil samples for field screening using an organic vapor analyzer.
- Installed a temporary piezometer inside a selected soil boring.
- Collected soil and groundwater samples from each DPT boring for on-site mobile laboratory screening analysis for benzene, toluene, ethylbenzene, and total xylenes (BTEX); naphthalene; and diesel range organics.
- Collected and analyzed four soil samples at a fixed-base analytical laboratory for BTEX and naphthalene using U.S. Environmental Protection Agency (USEPA)

Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270.

- Collected and analyzed one soil sample for total organic carbon using USEPA Method 415.1, total recoverable petroleum hydrocarbons using USEPA Method 9071, and grain size analysis using sieve and hydrometer methods.
- Installed three shallow permanent monitoring wells to a depth of 14 feet bls using hollow stem auger.
- Collected groundwater samples from newly installed, permanent monitoring wells for laboratory analysis at a fixed-base analytical laboratory.
- Analyzed groundwater samples for BTEX, methyl tert-butyl ether, and naphthalene using USEPA Method 8260 and PAHs using USEPA Method 8270.
- Surveyed monitoring well and top of casing elevation and collected depth to groundwater measurement to evaluate groundwater flow direction.

Conclusions

Four soil samples were collected on June 2, 1999, and analyzed for BTEX and PAHs by a fixed-base laboratory. Soil concentrations were reported below RBSLs for sandy soils in all borings except one. A duplicate sample from soil boring SB-02, collected at a depth of 2 to 3 feet bls, contained one CoC above the RBSL for soil leaching (naphthalene at a concentration of 1.8 mg/kg). The duplicate result obtained for naphthalene from the laboratory analysis was used for Risk-Based Corrective Action (RBCA) Tier I and Tier II evaluations. No other soil samples contained CoCs above the RBSLs for soil leaching.

One groundwater sampling event was conducted on September 8, 1999. Three newly installed monitoring wells were sampled. No dissolved CoCs were detected in any of the wells sampled.

Tier I Evaluation

A site conceptual model identified one possible receptor with three pathways present for Site 14:

- 1. A construction worker in a utility trench ingesting subsurface soil and/or having dermal contact with affected subsurface soil.
- 2. A construction worker in a utility trench who might inhale petroleum hydrocarbon vapors emitted from newly exposed subsurface soil.
- 3. A construction worker in a utility trench who might ingest potentially contaminated groundwater and/or have dermal contact with groundwater contaminated by the leaching of petroleum hydrocarbons from the soil to the groundwater.

Tier II Evaluation

The maximum soil concentration of naphthalene (1.8 mg/kg) found during the site assessment does not exceed the calculated soil leaching SSTL for naphthalene (250 mg/kg). Therefore, the construction worker is not at risk if exposed to groundwater by dermal contact, incidental ingestion, and/or inhalation--regardless of downgradient distance from the source. This potential receptor is considered nonthreatened and further analysis is unnecessary.

The CoCs detected in soil at the site (naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and chrysene) are not volatile organic compounds that readily produce vapors. Because the utility lines in the area are generally shallow (i.e., less than 6 feet) there is little potential for confined space working conditions. Therefore, exposure to potential vapors emitted from subsurface soil while a construction worker is working in a utility trench was not considered further.

Soil concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h) anthracene in soil boring SB02D (duplicate sample) exceeded the RBSLs for ingestion or dermal contact of the impacted soil. However, the RBSLs provided in the RBCA

Guidance assume that a commercial worker will have exposure duration for 25 years having an exposure frequency of 250 days per year. A construction worker would be expected to have a much lower exposure duration and exposure frequency based on the nature of utility, construction, or remediation work. The exposure frequency can be assumed to be 90 days/year or less and the exposure duration can be assumed to be one year or less. These assumptions are based on the nature of typical utility-type work. maximum concentration Furthermore. the source of benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h) anthracene detected in soil exceeds the RBSLs by a slight amount. Therefore, benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h) anthracene are not considered a threat to a construction worker in a utility trench. A construction worker ingesting or contacting impacted soil is not considered at-risk and the dermal/ingestion pathway is not considered for further analysis.

Recommendations for Further Action

Fixed-base analytical results of the sample collected from soil boring SB-02D (duplicate sample) revealed benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene at concentrations that exceeded the RBSLs for ingesting or contacting the impacted soil. Because of the greatly reduced potential exposure frequency (an estimated 90 days for a one-year period instead of the RBCA model of 250 days for a 25-year period), the construction worker ingesting or contacting impacted soil is not considered at-risk. Preparation of an Intrinsic Corrective Action Plan is recommended.

Southern Division, Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29406

STANDARD LIMITED ASSESSMENT REPORT

Site 14
Housing Quarters S
1545 Hobson Avenue
Charleston Naval Base Complex
North Charleston, South Carolina 29405-2413

Site ID # 01089

Submitted to:

Bureau of Underground Storage Tank Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

This report has been reviewed by:

Name	Gregory D. Swanson, P.E.	17132	1/24/2000
	Registered Professional Engineer	Registration #	Date
Signature	Livanson		1/24/2000
REGISTE	RED SO SO SO SESSION SELECTION OF SESSION SELECTION	5-5-7	Date
	IONAL SEAL, No. 17102 1	SCDHEC Certificate #	24
	THE D. SWALLING	I	

STANDARD LIMITED ASSESSMENT REPORT OF FINDINGS

I <u>INTRODUCTION</u>

A. Owner/Operator Information

Name: Southern Division, Naval Facilities Engineering Command

Address: 2155 Eagle Drive, North Charleston, South Carolina, 29406

Telephone Number: 843-820-7307

B. Property Owner Information

Name (if different from above): Same as above

Address:

Telephone Number:

C. Contractor Information

Name: Tetra Tech NUS

Address: 661 Andersen Drive, Foster Plaza 7, Pittsburgh, PA 15220

Telephone Number: 412-921-7090

D. Site Information

Address: 1545 Hobson Avenue

North Charleston, South Carolina 29405-2413

Description of Adjacent Land Use (Commercial, residential, rural, etc.) Include documentation (e.g. zoning regulations) as appropriate:

The CNC is in the city of North Charleston, on the west bank of the Cooper River in Charleston County, South Carolina. This installation consists of two major areas: an undeveloped dredge materials area on the east bank of the Cooper River on Daniel Island in Berkley County, and a developed area on the west bank of the Cooper River. The developed portion of the base is on the peninsula bounded on the west by the Ashley River and on the east by the Cooper River. The site is located within the developed portion of the base.

The areas surrounding CNC are "mature urban," having long been developed with commercial, industrial and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. While ownership has changed over time, the land adjacent to NAVBASE remains dedicated to chemical, fertilizer, oil refining, metallurgy, and lumber operations

Predicted Future Land Use (include site and adjacent area):

Site 14 is located in Zone B of the CNC. Zone B consists primarily of former officer's quarters and a golf course and contains properties identified in the *Final Environmental Impact Statement for Disposal and Reuse of the Charleston Naval Base* (Ecology & Environment, Inc., June 1995) to be used for active recreation (e.g., golf course), or a cultural park, or a waterfront park.

E. Site History

Date Release Reported to SCDHEC: May 22, 1998
Estimated Quantity of Product Released: Unknown

Cause of Release: At removal, UST Quarters S1 was in good condition with no corrosion, pitting, or holes. UST Quarters S2 was in poor condition. The metal was thin and two 3/8-inch diameter holes were found about half way down the northeast side.

UST#	Product	Date Installed	Currently in use (Yes or No)	If not in use, Date Removed
1	Fuel Oil	Unknown ⁽¹⁾	No	4/14-16/98
2	Fuel Oil	Unknown ⁽¹⁾	No	4/14-16/98

(1) Quarters S was built in the late 1930s. UST Quarters S2 is thought to be the original fuel oil tank for the building. At an unknown date, it was abandoned and UST Quarters S1 was installed.

Other Releases at this site?	Yes	No	X	
If yes, Date Release Reported to	SCDHEC: Not applie	cable		
Status of Release: Corrective act	tion			

No Further Action Date: Not applicable

SITE CHARACTERISTICS

A. Site Geography

Describe the topography of the site and surrounding area (slope, vegetation, bodies of water, major land features, etc.): Site 14, CNC is located in Charleston County, South Carolina, in the Lower South Carolina Coastal Plain Physiographic Province on the Cooper River side of the Charleston Peninsula. The peninsula is formed by the confluence of the Cooper and Ashley Rivers. Topography in the area is typical of the South Carolina lower coastal plain and is characterized by having low-relief plains broken by meandering streams and rivers flowing toward the coast, past occasional marine terrace escarpments (E/A&H, 1996).

Site 14 is located in Zone B of the CNC. The site and adjacent areas have long been developed. Land use in Zone B consisted of officer's quarters and a golf course and vegetation is consistent with that use. Noisette Creek is located approximately 972 feet north of the former UST locations. The Cooper River flows approximately 1,800 feet to the west of the site.

Mean Elevation of Site: 7.96 ft above MSL

Additional Comments: None

Exposure Analysis

Describe all potential receptors and preferential pathways within a 1000-foot radius of the site.

Description of Receptor	Distance/Direction from Site
Visitor/Recreator	On-site – no complete pathway
On-site Resident	On-site – no complete pathway
Off-site Resident	Nearest building ~50 feet south-southeast — no complete pathway
Construction Worker	On-site – working in soils or groundwater
Commercial Worker	On-site – no complete pathway
Surface Water	UST S2 to Noisette Creek - ~972 feet – no complete pathway

Provide any additional comments necessary to complete the exposure analysis:

Visitor/Recreator -

This property is expected to be a recreational area (golf course and park); therefore, a visitor/recreator was considered as a potential receptor. There is no groundwater impact above RBSLs at the site so no complete groundwater pathways exist. Surface soil is not impacted at the site and recreators are not expected to contact subsurface soil. It is unlikely that any additional exposure pathways will exist; therefore, no complete pathways exist for visitors/recreators.

On-site Resident -

An on-site resident is defined as any person making his or her home at the site. This site is expected to be a recreational area; however, it is possible that it is currently used to house personnel from ships being serviced at the base. Therefore, a current resident was considered as a potential receptor. There is no groundwater impact above RBSLs at the site so no complete groundwater pathways exist. Surface soil is not impacted at the site and residents are not expected to contact subsurface soil. It is unlikely that any additional exposure pathways will exist; therefore, no complete pathways exist for on-site residents.

Off-site Residents -

All pathways for off-site resident would be the same as those for an on-site resident. As no complete pathways exist for an on-site resident, this receptor was not considered further.

Construction Worker -

An on-site construction worker is defined as a laborer who would be involved in intrusive activities on or around the site, particularly in the area of subsurface utilities. On-site construction workers could be exposed to constituents in soil by the following pathways: inhalation of volatiles from soil, dermal contact with soil, and incidental ingestion of soil. On-site construction workers could be exposed to constituents in groundwater by the following pathways: inhalation of volatiles from groundwater, dermal contact with groundwater, and incidental ingestion of groundwater. There is no groundwater impact at the site; however, impacted soil leaching to groundwater was considered as a complete pathway. There are buried water, electric, and a sanitary sewer lines within close proximity of the former UST location; therefore, the point of exposure location for the on-site construction worker was considered to be at the source.

Commercial Worker -

An on-site commercial or industrial worker is defined as a business employee who works in a commercial/industrial capacity at the site. The future use of the property is expected to be recreational but may possibly be industrial or commercial; therefore, an on-site worker was considered as a potential receptor. Incidental ingestion and dermal contact with impacted soil are expected to be negligible for commercial workers because they are located inside a building. Groundwater at the site is not impacted above the RBSLs; therefore, no groundwater pathways are complete. It is unlikely that any additional exposure pathways will exist; therefore, no complete pathways exist for commercial workers.

Surface Water -

Noisette Creek is located approximately 972 feet north of the site. There is no impacted groundwater at the site to impact off-site surface water; therefore, this pathway was not considered further.

B. Utilities Survey

List the utilities on site, and adjacent to the site within a 250-foot radius, that could serve as exposure points or as preferential pathways.

Utility	On-site or Distance/Direction from site	Depth to Utility	
Buried Communication	~ 35 feet east of former UST S2	See note	
Cable			
Electric	~ at former UST S1	See note	
Water	~ at former UST locations	See note	
Sanitary Sewer	~ at former UST locations	See note	
Storm Sewer	~ 75 feet south of UST S1	See note	

Additional Comments: Specific information concerning the depth of utilities below land surface is currently unavailable. However, according to facility personnel, typically utility lines are located approximately 2 to 6 feet bls (SPORTENVDETCHASN, 1999).

SPORTENDETCHASN (Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth Virginia, Environmental Detachment Charleston), 1999. Personal Contact between Paul Calligan, TtNUS and Copes Wannamaker, SPORTENDETCHASN, June 17, 1999.

C. Site Geology

Provide a brief description of the regional geology and hydrogeology:

The geology of the Charleston area is typical of the southern Atlantic Coastal Plain. Cretaceous-age and younger sediments thicken seaward and are underlain by older igneous and metamorphic basement rock. Surface exposures consist of Recent or Pleistocene sands, silts, and clays of high organic content referred to as the Wando Formation (E/A&H, 1996a). Underlying the Wando Formation, increasing with age, are the Oligocene-age Cooper Group and the Eocene-age Santee Limestone. The Cooper Group is comprised of the Parkers Ferry, Ashley, and Harleyville Formations. The formation of particular importance in the Cooper Group is the Ashley Formation, which was formerly referred to as the Cooper Marl in most regional geologic literature. In more recent geologic nomenclature, the name "Cooper" has been given to a group of formations which includes the Ashley Formation, a pale-green to olive-brown, sandy phosphoric limestone or marl, which is locally muddy and/or sandy. The Ashley Formation in the vicinity of Charleston is encountered at a depth of approximately 30 to 70 feet bls. The top of the Ashley Formation has

been reported to be associated with an erosional basin and the entire Cooper Unit, including the Ashley Formation, is indicated to be approximately 300 feet thick (E/A&H, 1996).

Provide a brief description of the site geology and stratigraphy:

The unconsolidated sediments underlying Site 14 were observed during soil boring and monitoring well installation activities conducted between May 25 and June 8, 1999. One to 2 feet of loose sand and silty sand was encountered across the surface of most of the site. Grading downward to approximately 6 feet was interbedded sandy clay and clayey sand that alternated between tan to dark brown to blue-gray in color. Saturated conditions were typically observed below about 5 to 7 feet depth. Rock and shell fragments were regularly observed in the upper 4 feet. Wood chips or fragments were noted in several borings between depths of 5 to 7 feet. In the deep boring (14B08), a sulfuric odor was observed between 16 to 26 feet deep in fine-grained sand to a total depth of 30 feet. The sediments encountered are consistent with the Wando Formation that consists of Quaternary aged clay and sand units.

D. Soil Boring Data

Drilling Dates: May 25, 1999

Provide a brief justification for the location of the soil borings

SB-1	North of former UST S2
SB-2	At location of S2
SB-3	South of former S2 and location of former supply and return line
SB-4	East of former UST S1
SB-5	Location of former supply and return line for S1
SB-6	At location of S1
SB-7	South of S1
SB-8	West of S1
SB-9	East of S2
SB-10	Downgradient of S1
SB-11	Downgradient of S2

Complete the table below for each soil boring.

<u>UST Area Borings</u> -

Borehole SB - CNC14B01 Sampling Date - 5/25/99 Sample Depth - 2-3 feet bgs

Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
0-2	0	Under asphalt and concrete: firm tan clay, sandy	Slightly moist to moist
4-5	0	Loose, medium brown sand, silty	Moist
5-6	0	Firm, dark gray clayey mottled rust colored with wood fragments	Sulfur odor
7-8	0	Loose, medium brown sand, silty	Moist to wet

Borehole SB - CNC14B02 Sampling Date - 5/25/99 Sample Depth - 2-3 feet bgs

Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)	
0-1	0/3	Loose, medium brown sand, v. f. grain, silty	Slightly moist	
1-2	0	Slightly clayey		
3-4	50/10 (with filter)/ 150 (headspace)	Tan clay, sandy	Moist to wet	
4-5		Firm gray clay, sandy	Slightly moist, fuel odor	
6-7	90	Loose tan, wood fragments, fuel stains	Fuel odor, moist to wet	
7-8	400	Loose tan and, v. f. grain	Wet	

Borehole SB - CNC14B04 Sampling Date - 5/25/99 Sample Depth - 3-4 feet bgs

Split Spoon Field Screening Results (mg/kg) 0-1 0/0		Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor) Slightly moist	
		Loose tan sand, fine grain, silty with rootlets		
2-3	0	Firm tan clay, sandy, silty	Slightly moist	
3-4	0	Tan sand, fine grain, slightly clayey	Moist	
6-7	120/140 –with filter	Firm gray clay, silty	Slightly moist	
7-8		Tan wood	Wet	
8-9		Tan sand, fine grain	Wet	

Borehole SB -	CNC14B06	Sampling Date - 5/25/99 S	ample Depth - 4-5 feet bgs
Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, eolor, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
0-1	0	Loose medium brown silt with rootlets, with cinders	Slightly moist
2-3	0 (4-5 ft)	Sand, clayey, many shell fragments	Slightly moist to moist
6-7		Tan wood	Wct @ 6 feet
7-8	0	Tan sand, silty	Wet

Borehole SB -	CNC14B07	Sampling Date - 5/25/99	Sample Depth - 3-5 feet bgs
Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
0-1	0/0	Loose medium brown silt, sandy, slightly clayey	Slightly moist
2-3		Tan clay, sandy, mottled rust colored	Slightly moist
5-6	0/120/180 with filter (4-5 ft bgs)	Tan wood	Moist to wet
6-7	0 (7-8 ft bgs)	Medium brown sand, slightly clayey	Wet

Borehole SB -	CNC14B08	Sampling Date -	5/26/99	Sample Depth -	3-5 feet bgs
---------------	----------	-----------------	---------	----------------	--------------

Split Spoon	Field Screening	Lithology (soil type, color, rocks/minerals	Soil Conditions (dry, moist,
interval (ft.)	erval (ft.) Results (mg/kg) present)		ete; petroleum odor)
0-1	0/0	Loose medium brown sand, v. f. silt, slightly clayey with rootlets	Slightly moist
2-3	-	Firm tan clay, sandy	Slightly moist
4-5		Firm to soft blue-gray clay, silty	Moist
5-6	-	Tan wood	Moist to wet
6-7	80/80 with filter	Loose tan sand, silty	Wet
12-13	35/30 with filter	Medium to dark brown sand, silty, v.f. grain	Saturated
14-15	45/45 with filter	Tan to light gray sand, f. grain, sulfur odor	Saturated
17-18	140/140 with filter	Same as above	Saturated
25-26	40/40 with filter	Same as above	Saturated
TD=30			

Borehole SB - CNC14B09 Sampling Date - 6/8/99 Sample Depth -

Split Spoon Field Screening Results		Lithology (soil type, color,	Soil Conditions (dry, moist,
Interval (ft.)	(mg/kg)	rocks/minerals present)	ete; petroleum odor)
0-1		Under asphalt: silty sand	Dry
4-5	18	Olive sandy clay	Moist
5-6		Dark brown silty sand	Saturated
8-10	70	Soupy muck with sand/gravel	Saturated
10-12		Silty sand	Saturated

Borehole SB -	CNC14B10	Sampling Date -	6/8/99	Sample Depth -
201411012 42	01.01.010	~	0.0.00	Sumpre zepin

Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, color, rocks/minerals	Soil Conditions (dry, moist, etc; petroleum odor)
	Results (Ing/kg)	• /	
0-1		Under 2" overburden: dark brown silty sand	Dry
1-2		Light brown sandy clay	Dry
4-5	150 (3-4 feet)	Light brown silty sand	Moist
5-7	990 (6-7 feet)	Brown silty clay	Saturated
7-8		Light brown silty sand	Saturated
10-11		Gray silty sand with wood chips	Saturated

Piping and Dispenser Area Borings -

Borehole SB –	CNC14B03	Sampling Date -	5/25/99	Sample Depth -	3-4 feet bgs
---------------	----------	-----------------	---------	----------------	--------------

Split Spoon Field Screening Interval (ft.) Results (mg/kg)		Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)		
0-1	0/5	Loose, medium brown sand, silty, slightly clayey, rock fragments	Slightly moist		
2-3	0 Firm tan clay, silty, rock fragments, sharks teeth		Slightly moist		
4-5	0/60	Firm, blue-gray clay, silty	Moist		
6-7	0	Tan wood	Moist to wet		
7-8	0	Sand, v f. grain	Wet		

Borehole SB –	CNC14B05	Sampling Date - 5/25/99 Sampling Date - 5/25/99	ample Depth - 3-4 feet bgs
Split Spoon Interval (ft.)	Field Screening Results (mg/kg)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, ete; petroleum odor)
0-1	0/0	Loose medium brown silt, slightly clayey. rootlets	Slightly moist.
2-3		Firm tan clay, silty shell fragments	Slightly moist.
3-4		Sand, silty	Moist to wet.
4-5	30/25 with filter (headspace)	Firm tan clay, silty. Slightly moist, sulfur odor	Same as above.
5-6			
6-7		Tan wood.	Wet
7-8	-	Medium brown sand, silty, slightly clayey	Wet

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page. Enter the appropriate RBSL for the soil type from Tables 4 through 8 in SCDHEC Risk-Based Corrective Action (RBCA) for Petroleum Releases Guidance Document.

CoC	RBSL ⁽¹⁾	SB-2	SB-2D	SB-4	SB-5	SB-6
Benzene	5	<7	<6	<6	<6	<6
Toluene	1622	<7	<6	<6	<6	<6
Ethylbenzene	1260	<7	<6	<6	<6	<6
Xylenes	42,471	<7	<6	<6	<6	<6
Naphthalene	210	<7	1800	<6	<6	<6

CoC	RBSL ⁽¹⁾	SB-2	SB-2D	SB-4	SB-5	SB-6
Benzo(a)anthraeene	73,084	<430	7000	<400	<430	<400
Benzo(b)fluoranthene	29,097	<430	8500	<400	<430	<400
Benzo(k)fluoranthene	231,109	<430	3500	<400	<430	<400
Chrysene	12,998	<430	6700	<400	<430	<400
Dibenzo(a,h)anthraeene	87,866	<430	970	<400	<430	<400
TPH (EPA 3550) mg/kg	N/A	785	321	NA	NA	NA
TOC (background boring)	N/A	NA	NA	NA	11,900	NA
mg/kg						

NA = Not Available

All units in µg/kg, except as noted.

Discuss the horizontal and vertical extent of COC in the soil: Only the duplicate sample from soil boring -02, 14SLB020203D, had any detectable CoCs, with only naphthalene at a concentration above its RBSL. The original sample at soil boring -02 had no detectable CoCs. This sample was collected at 2-3 feet below ground surface. Other soil samples collected at deeper intervals but in different locations were all non-detect.

Additional Comments: None

⁽¹⁾ SCDHEC Risk Based Screening Levels for sandy soils; depth to groundwater < 5 feet.

F. Chemicals of Concern - Ground Water

Provide well installation information in the table below.

MW No.	Installation Date	Development Date	Sampling Date
MW-01	6/21/99	7/2/99	7/13/99
			9/8/99
MW-02	8/25/99	8/26/99	9/8/99
MW-03	8/25/99	8/26/99	9/8/99

Enter the soil analytical data for each monitoring well for all CoC in the table below.

Not Applicable. Soil from well construction was not analyzed for CoCs.

CoC	MW-	MW-	MW-	MW-	
Depth of sample					
Benzene					
Toluene	<u> Г</u>				7
Ethylbenzene					
Xylenes	during		not collected from bot allation. However, sc		
Total BTEX			oorings located in the		
Naphthalene	See	preceding soil analy	tical data for direct p	ush borings.	
Benzo(a)anthracene					
Benzo(b)fluoranthene					
Benzo(k)fluoranthenc					
Chrysene					
Dibenz(a,h)anthracene					
Lead					
EDB					

Summarize the monitoring well and ground water data in the table below.

MW No.	Date	TOC	Screened	Depth to	Water Table
	Measured	Elevation (feet)	Interval (feet BTOC)	Water (feet)	Elevation (ft)
MW-01	7/13/99	7.79	4-14	4.67	3.12
MW-01	9/8/99	7.79	4-14	4.71	3.08
MW-02	9/8/99	8.20	3-13	5.15	3.05
MW-03	9/8/99	7.24	4-14	4.20	3.04

Enter field data measurements (temperature, pH, conductivity) taken during well purging on the forn provided. Complete for each well.

Monitoring Well No.	Date Measured	Dissolved Oxygen (mg/l)
MW-01	7/13/99	2.86
MW-01	9/8/99	2.39
MW-02	9/8/99	0.73
MW-03	9/8/99	1.27

Enter the ground water analytical data for each monitoring well for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (ug/l)	MW-01	MW-01	MW-02	MW-03
Date Sampled	91 ^	July 13, 1999	Sept. 8, 1999	Sept. 8, 1999	Sept. 8, 1999
Free Product Thickness	None	0.00	0.00	0.00	0.00
Benzene	5	<5	<5	<5	<5
Toluene	1,000	<5	<5	<5	<5
Ethylbenzene	700	<5	<5	<5	<5
Xylenes	10,000	<5	<5	<5	<5
Total BTEX	N/A	_	_		-
EDB	5	<5	<5	<5	<5
MTBE	40	<5	<5	<5	<5
Naphthalene	25	<5	<5	<5	<5
Benzo(a)anthracene	10	<10	<10	<10	<10
Benzo(b)fluoranthene	10	<10	<10	<10	<10
Benzo(k)fluoranthene	10	<10	<10	<10	<10
Chrysene	10	<10	<10	<10	<10
Dibenzo(a,h)anthracene	10	<10	<10	<10	<10
Ferrous Iron	N/A	NA	3.04 mg/L	3.3 mg/L	3.30 mg/L
				Limit	Limit
Lead	Site Specific	NA	NA	NA	NA
Nitrates (mg/L)	N/A	NA	<0.050	<0.050	0.072
Sulfates (mg/L)	N/A	NA	2.0	2.7	560

NA = Not Analyzed

All units µg/L except as noted.

Additional Comments: None

G. Aquifer Characteristics

Hydraulic Conductivity: 2.90 ft/day – average of three shallow well slug tests in Zone B RFI

Hydraulic Gradient: 0.00458 ft/ft

Porosity: Zone B - 43% (Zone B RFI Report) / site-specific - 47% (default for sandy soil -

sieve analysis indicated 90 percent sand; porosity = 0.45)

Estimated Seepage Velocity: 0.028 feet/day

II. Tier I Evaluation

Performance of a Site Conceptual Model is required because the RBSLs for soil leaching were exceeded. Groundwater RBSLs were not exceeded. Only one CoC concentration in soil exceeded the RBSLs for sandy soil at a depth to groundwater of <5 ft. The duplicate sample from soil boring SB-02 (Sample No. SB-02D) at 2 to 3 feet below land surface contained naphthalene at a concentration of 1,800 μ g/kg. Exceeding the soil RBSL for naphthalene requires performance of a Site Conceptual Model (identification of current and future potential receptors and human exposure pathways) as shown below.

A. CURRENT LAND USE – Identify any potential receptors or human exposure pathways (e.g. basements, contaminated soils from UST closures, etc.) within a 1000-foot radius for current land use.

Media (for exposure)	Exposure Route	Pathway Selected for Evaluation?	Exposure point or Reason for Non-Selection	Data Requirements (IF pathway selected)
Air	Inhalation	No	All volatiles measured at non-detects.	
	Explosion Hazard	No		
Ground- Water	Ingestion	No	There were no groundwater	
	Dermal Contact	No	concentrations of CoCs above	
	Volatile Inhalation	No	detection.	
Surface Water	Ingestion	No	There were no groundwater	
	Dermal Contaet	No	concentrations of CoCs above	
	Volatile Inhalation	No	detection.	
Surficial Soil	Ingestion	No	No surface soil is impacted.	
	Dermal Contact	No		
	Volatile Inhalation	No		
	Leaching to Groundwater	No		
Subsurface Soil	Ingestion	No	No current complete pathways.	
	Dermal Contact	No	,	
	Volatile Inhalation	No		
	Leaching to Groundwater	No		

B. FUTURE LAND USE – identify any potential receptors of human exposure pathways (e.g. basements, contaminated soils from UST closures, etc.) within a 1000-foot radius for projected future land use.

Media		Pathway Selected	Exposure point or	Data
(for exposure)	Exposure Route	for Evaluation?	Reason for Non-Selection	Requirements (IF pathway selected)
Air	Inhalation	No	All volatiles measured at non-detects.	
	Explosion Hazard	No		
Ground- Water	Ingestion	No	There were no groundwater	
	Dermal Contact	No	concentrations of CoCs above	
	Volatile Inhalation	No	detection.	
Surface Water	Ingestion	No	There were no groundwater	
	Dermal Contact	No	concentrations of CoCs above	
	Volatile Inhalation	No	detection.	
Surficial Soil	Ingestion	No	No surface soil is impacted.	
	Dermal Contact	No		
	Volatile Inhalation	No		
	Leaching to Groundwater	No		
Subsurface Soil	Ingestion	Yes	Construction workers in utility	No additional data needed.
	Dermal Contact	Yes	trench. No volatile organics are present	
	Volatile Inhalation	No	in the soil above RBSLs.	
	Leaching to Groundwater	Yes		

Recommendations for further action:

The Site Conceptual Model identified one possible receptor with two pathways;

- 1). A construction worker in a utility trench ingesting and having dermal contact with impacted subsurface soil.
- 2). A construction worker in a utility trench who might ingest and have dermal contact with groundwater contaminated by the leaching of petroleum hydrocarbons from the soil to the groundwater.

Based on the identification of possible receptors, a Tier 2 evaluation was performed and is presented in the next section.

III. Tier 2 Evaluation

A Tier 2 evaluation is necessary for determining the potential risk to a construction worker in a utility trench exposed to naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, or dibenzo(a,h) anthracene in soil or groundwater that has leached from impacted soil. The following analyzes two scenarios for a construction worker being exposed to the potential risk.

RBSLs FOR CONSTRUCTION WORKER EXPOSURE

Ingestion and Dermal Contact with Soil for a Construction Worker in a Utility Trench

The only identified potential receptor is the construction worker. For ingestion and dermal contact with soil while working in a utility trench, subsurface soil exposure to a construction worker is similar to surface soil exposure. The RBSLs given by SCDHEC for ingestion and dermal contact with surficial soils by a commercial worker are compared to the site soil concentrations in the table below. (RBSLs for commercial workers are conservative for construction workers. See note (1) below.)

СоС	RBSL	SB-2	SB-2D	SB-4	SB-5	SB-6
Benzene	200	< 0.007	<0.006	<0.006	<0.006	<0.006
Toluene	410,000	< 0.007	< 0.006	<0.006	<0.006	<0.006
Ethylbenzene	200,000	< 0.007	<0.006	<0.006	<0.006	< 0.006
Xylenes	1,000,000	< 0.007	<0.006	<0.006	<0.006	<0.006
Naphthalene	41,000	< 0.007	1.8	<0.006	<0.006	<0.006
Benzo(a)anthracene	3.9	<0.430	7.0	< 0.400	<0.430	<0.400
Benzo(b)fluoranthene	3.9	<0.430	8.5	<0.400	<0.430	<0.400
Benzo(k)fluoranthene	39	<0.430	3.5	<0.400	<0.430	<0.400
Chrysene	390	<0.430	6.7	<0.400	<0 430	<0.400
Dibenzo(a,h)anthracene	0.39	<0.430	0.970	<0.400	<0.430	<0.400

Note: All concentrations in mg/kg

A commercial worker has a typically assumed exposure duration (ED) of 25 years and an exposure frequency (EF) of 250 days/year. A construction worker would be expected to have a much lower exposure duration and exposure frequency based on the nature of utility or construction work. The exposure frequency can be assumed to be 90 days/year and the exposure duration can be assumed to be 1 year. These assumptions are based on the nature of utility work. Therefore, the RBSLs for construction workers are expected to be higher than those for commercial workers.

Soil concentrations in soil boring SB02D (duplicate sample) for benzo(a)anthracene, benzo(b) fluoranthene, and dibenzo(a,h)anthracene exceeded the RBSLs for ingesting or contacting the impacted soil. Therefore, a construction worker contacting or accidentally ingesting soil while working below grade on the sanitary sewer adjacent SB02 (area of former UST Quarters S2) could be considered at risk.

The concentrations for benzo(a)anthracene, benzo(b) fluoranthene, and dibenzo(a,h)anthracene exceed the Commercial RBSL for ingestion or dermal contact with surficial soil. However, the RBSLs provided in the RBCA Guidance assume that a commercial worker will have an exposure duration for 25 years having an exposure frequency of 250 days per year. A construction worker would be expected to have a much lower exposure duration and exposure frequency based on the nature of utility, construction, or remediation work. The exposure frequency can be assumed to be 90 days/year or less and the exposure duration can be assumed to be one year or less. These assumptions are based on the nature of typical utility-type work. Furthermore, the maximum source concentration of benzo(a)anthracene, benzo(b) fluoranthene, and dibenzo(a,h)anthracene detected in soil only slightly exceeds the RBSLs. Therefore, benzo(a)anthracene, benzo(b) fluoranthene, and dibenzo(a,h)anthracene is no longer considered a threat to a construction worker in a utility trench and is not considered for further analysis.

Ingestion of and Dermal Contact with Groundwater and Inhalation of Vapors (Impacted by Soil Leaching) for a Construction Worker in a Utility Trench

An additional pathway considered complete for construction workers was that of leaching to groundwater. The potential construction worker's exposure to groundwater was assumed to consist of three pathways: dermal contact, incidental ingestion, and inhalation of volatiles. Drinking water is provided by the city; therefore, ingestion of groundwater is not a complete pathway.

1) Calculation of RBSLs

Groundwater RBSLs provided by SCDHEC are for ingestion only; therefore, RBSLs were calculated for the additional pathways.

Groundwater RBSLs for the construction worker were calculated for three pathways: dermal contact, incidental ingestion, and inhalation of volatiles. A target cancer risk of 1 x 10⁻⁶ and a target hazard quotient of 1 were used in the calculations. Standard defaults were used when available and applicable to a construction worker. When no standard parameters were available, conservative assumptions were used. Where possible, site-specific parameters were used for site conditions. For all pathways, the exposure frequency was assumed to be 90 days/year and the exposure duration was assumed to be 1 year. These assumptions were considered conservative based on the nature of utility work.

The dermal contact RBSLs were calculated using procedures given in *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance* (EPA Peer Consultation Workshop Draft 1998). Based on expected limited contact with groundwater, the event frequency was assumed to be one event/day and the event duration was assumed to be one hour/event. The skin surface area available for contact was 4500 cm², based on one-fourth the skin surface area given in the risk assessment guidance document for a swimming adult.

The incidental ingestion RBSLs were calculated using the equation given in *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final)*, EPA/540/1-89/002 (EPA 1989). An incidental ingestion rate of 0.01 L/day was assumed based on a fraction (12.5%) of the incidental ingestion rate for a wading adult (0.01 L/hr), considered for an 8-hour work day. The incidental ingestion rate for wading adults is given in *Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment* (EPA Region 4 1995).

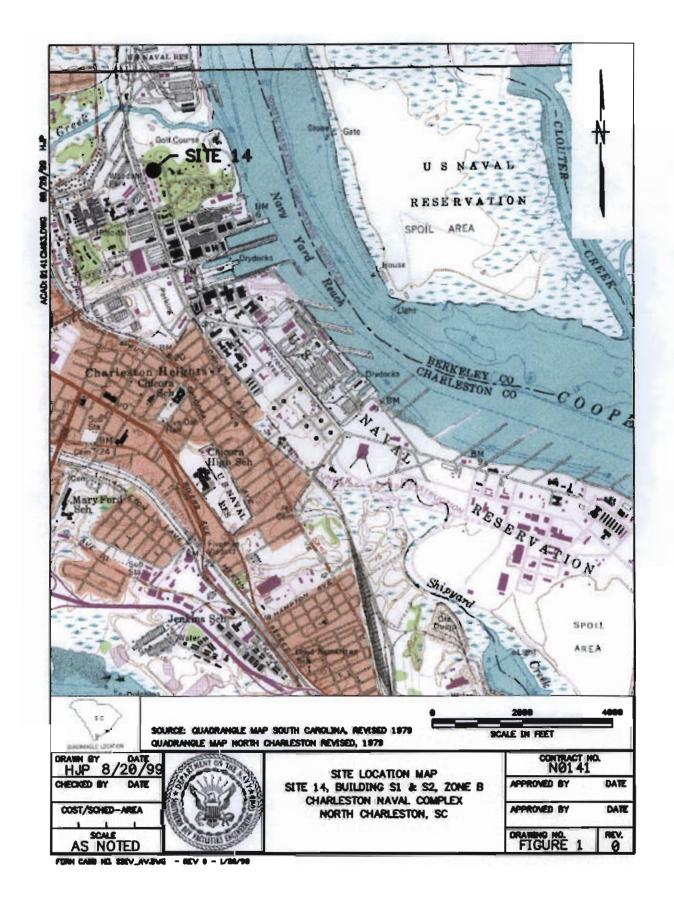
The inhalation RBSLs were calculated using equations given in the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites, Designation E 1739-95E1 (1997). Site-specific values for total soil porosity and depth to groundwater were used. Other parameters were ASTM defaults.

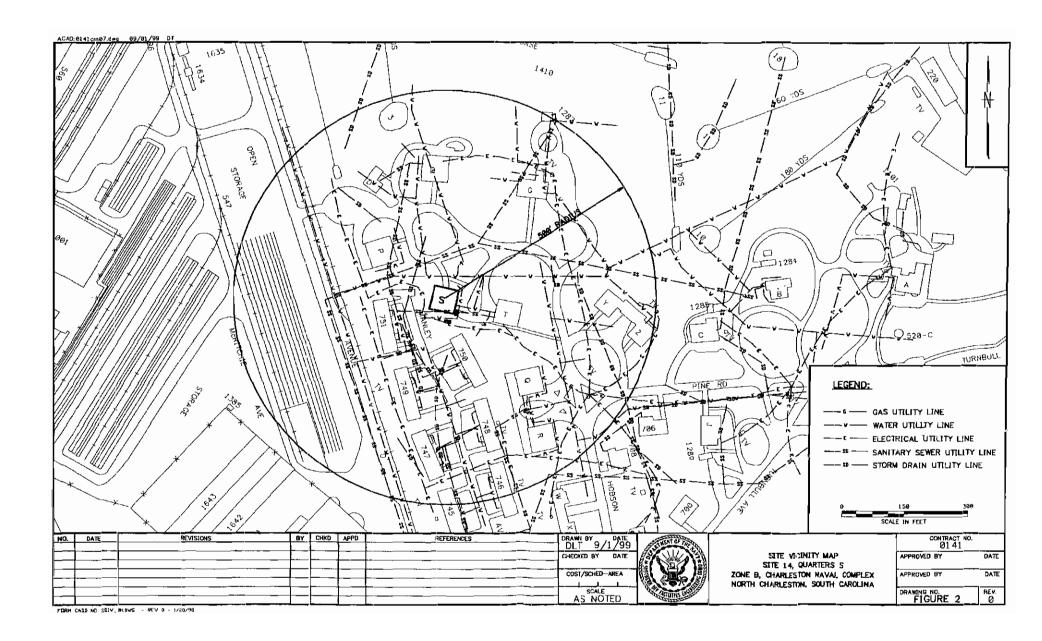
The minimum RBSL for the three pathways was chosen as the RBSL for the construction worker. The following tables show the calculated RBSLs for each pathway along with the selected (minimum) RBSL:

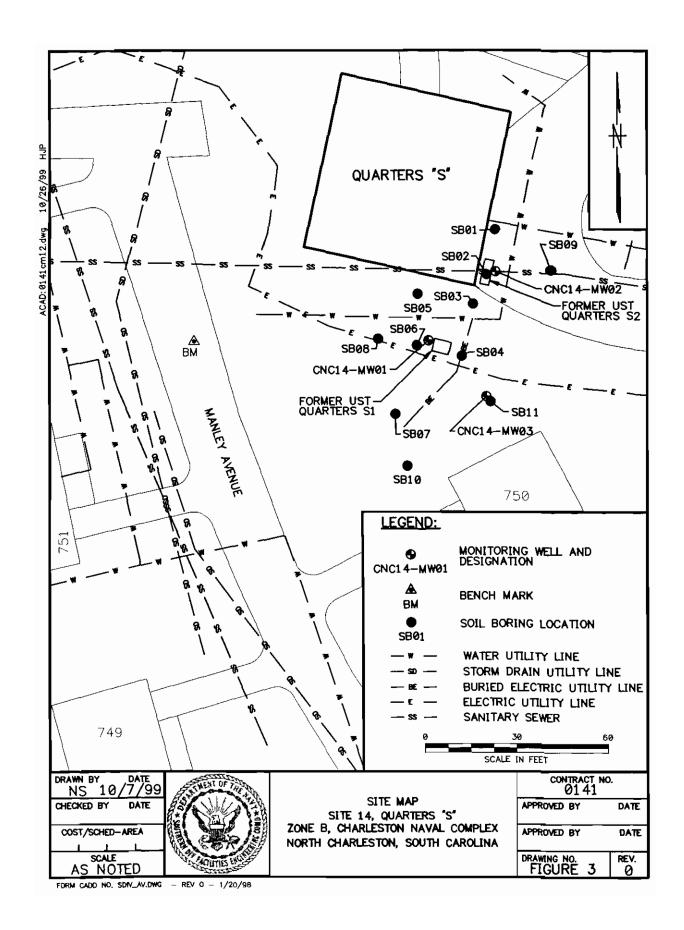
	Dermal RBSL	Incidental Ingestion RBSL	Inhalation RBSL	Selected (Minimum)
	mg/L	mg/L	mg/L	mg/L
Naphthalene	1.63	113.56	2.63	1.63

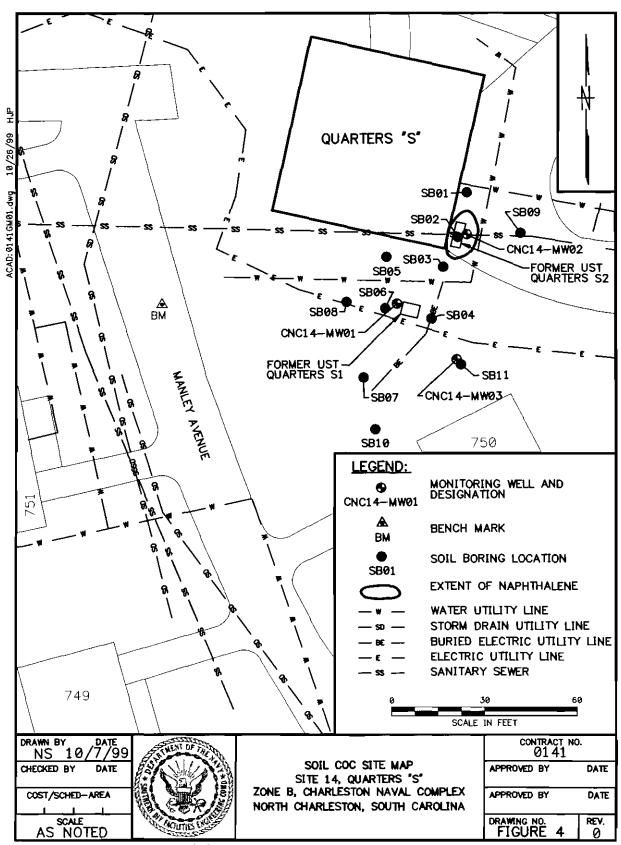
2) Calculation of SSTL for Naphthalene Leaching from Soil to Groundwater

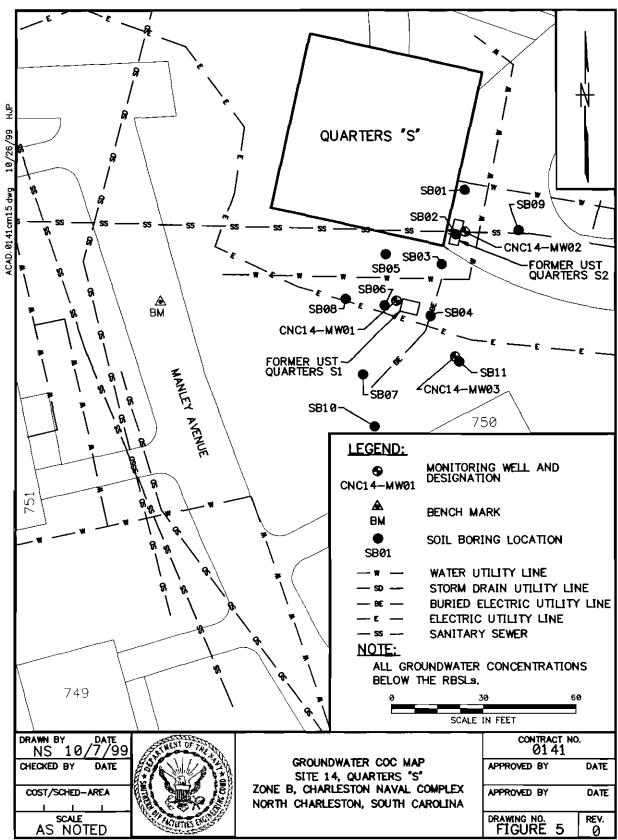
The naphthalene concentration from soil boring B02 duplicate (1.8 mg/kg) exceeded the soil-leaching RBSL for sandy soil of 0.210 mg/kg. The SCDHEC Soil Leachability Model was used to calculate a site-specific target level (SSTL) for naphthalene. Site-specific parameters were input when available, else SCDHEC defaults for sandy soil were used. The minimum calculated groundwater RBSL for construction worker exposure (1.63 mg/L)(see above table) was used as opposed to the groundwater RBSL for ingestion (0.01 mg/L). The soil leaching SSTL calculated for naphthalene was 250 mg/kg, which is greater than the maximum naphthalene concentration of 1.8 mg/kg found in the soil during the site assessment.


СоС	Concentration in SB02-duplicate (mg/kg)	Soil Leaching SSTL (mg/kg)
Naphthalene	1.8	250


Therefore, since the maximum soil concentration of naphthalene (1.8 mg/kg) found during the site assessment does not exceed the calculated SSTL for naphthalene (250 mg/kg), the construction worker is not at risk if exposed to groundwater by dermal contact, incidental ingestion, or inhalation. The concentration of naphthalene in the groundwater resulting from naphthalene leaching from the soil to the groundwater will not exceed the RBSL for a construction worker in a utility trench (1.63 mg/L) regardless of distance from the source. This potential receptor is considered nonthreatened and further analysis is unnecessary.


Recommendations for Further Action:


Preparation of an Intrinsic Corrective Action Plan is recommended.


FIGURES

APPENDIX A
SOIL BORING LOGS

Sample De No. and Type or RQD N	PROPERTY OF THE PROPERTY OF TH	s / Sample r Recovery	Lithology Chenge (Depth/Ft.) or Screened Interval	Soli Density/ Consistence y or Rock Hardness	Color	RIAL DESCRIPTION	U S C S	Remarks	Semple elgen		Barehole**	Driller BZ-
No. (Fand Rand RQD N	Ft.) 6" or RQI (%)	r Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistence y or Rock Hardness	Color	Material Classification	S C S					Ţ.
		1.8/		fin		asphola & she for	13					
	/	1.8/		fin								
				•	The	Can sandy		& wort to me	Q,			0
	1/		71		<u> </u>	0 0		145F8010203	7 7		_	
	/	^					$oldsymbol{\perp}$				_	_
	1/	1	4.2	I good	en	Band, slay, ol.	_	moist	0/	7 .	_	_
	-	2.5/40	5.1 1	fin	Miles.	Carry, morled dark	2	sulfur odor	D	100	11	b
	-		-		0	gray must colled,	+				_	
- 1	8/	_				2 1 -2	+-			\vdash	ᅱ	
+	+	+]	loose		Sand, soly	+	noist nowet	0	-	\dashv	
- -	-/-	 				· - 0'	+				-{	_
	+	+				TD 8'	┼			\Box	ᅱ	
	+						+-		Н	\dashv	ᅱ	
		1					十一				_	
_ _	1/	1	1				十				7	
							1					_
_							ـــــ					
	/						<u> </u>				_	
_	$-\!$						igspace		Ш		_	
	-						_				_	
	-										4	
		nter rock bro										

ואט	LLING	RIG.	r —	<i></i>	tratag	_	DRILLER:		<u>RB</u>	DID/E	n e	adıng	loor
Samp No. and Type o RQD	(FL) of X Run	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S .	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		\angle		/	loop	gred Gra	Sand, V. gend, its	,	sl. nout	94			0
1	-		2.84	1.8			S. clayer	_	145F8020203	Ő			L
0-		_				#n	clay, may	-	moist to not	2	بر بر بر	7 8	βĠ
	14	-	<u> </u>		4*	giss	Con 1 0		7,7,1	10	\$		#
		$\overline{}$	21/4		from		Jay, sondy Im	727	<i>y</i>				_
2		$\overline{/}$		7′_	0.00	tto.	Wood hose had star	100	and odor, moist	90			
	8	\angle		715'	Rose	49-	Good frage, fool star		to not	400			
_							·					<u> </u>	-
		_				<u> </u>		<u> </u>					_
		-						+-					<u> </u>
	1	$\overline{}$											<u> </u>
		$ \angle $											
													
		_			-			 		-			-
	<u> </u>	_	<u> </u>							-	_		-
								 - -		_	-	ļ	╁╌
		$\overline{}$						-		-	-		<u> </u>
		$\overline{/}$											
								_		ļ	<u> </u>		_
<u> </u>	$\downarrow \downarrow \downarrow$				-		`	-			_		<u> </u>
ŀ											}		ŀ

	DRIL	LING	RIG:			ratal				<u></u>			_	<u>=</u>
	Sample No, and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soll Density/ Consistenc y or Rock Hardness	Color	RIAL DESCRIPTION Material Classification	U	Remarks 	Sample	Sampler BZ	Borehole**	Driller B7**
	`. 		=	3,3/4	1.4'	loose	nsd In	Sand, siley, S. chy	y	sl. most	0/5	1		
	34	4				fin	Yor	Ony, silvy, w frage		Sl. moist 145FB030304	0			
	2.					fin .	gray	Clay; intry		worst	Q/ ₆	· •		
	0	8		1.5/4	7'		the	Sand, V. grad		mint to nex	0			
ſ								TD8'	-					
														_
														_
_					-								_	
														_

	DRIL	LING	RIG:		<u></u>	trotof		DRILLER:		<u>198</u>	_			
I			.			U _N	IATE	RIAL DESCRIPTION			PID/FI	D Re	ading	(PP
	Sample No. and Type or RQD	(FL) or	Blows / 6" or RQĐ (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Oriller BZ**
Ì						love	tin	Rand R. and riles		sl. most	0/,	$\overline{}$		0
ĺ)		$\overline{}$	3.8/4	117'			Sand of gard may			-			
I			$\overline{}$		2.5'	fun	tor	Coy, sandy, may		sh. norst	0			
I	50	ч					to	Sand, f. and , d.		145F8040304	0			
								clayey		moist				
			\angle	1.8/4				•			29	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· w7	'L
۱					27	him	gud Das	Clay intry		al nost				,
	3	8			7.5	· .	Agra .	Word	<u> </u>	al most				
ļ							te.	Sand, f. and	<u> </u>	wet				
								· · · · · · · · · · · · · · · · · · ·						
ŀ									<u> </u>					
ŀ									ļ.,					
ŀ									ļ		<u> </u>	_		_
ŀ		_	//						<u> </u>		-			
ŀ				<u> </u>					<u> </u>					_
									<u> </u>		+	<u> </u>		-
		_	-						 		ļ. <u></u> .	_		L.
	\longrightarrow	\dashv							<u> </u>		 	┝		_
ŀ											+	 		<u> </u>
	\longrightarrow		-		-				 		-	 	_	
			-		•	· 			<u> </u>			 - -		_
		\dashv			ŀ				<u> </u>			<u> </u>		
			//		ŀ				┼-		+	_	_	\vdash
l		\dashv	//						+		-	<u> </u>	 	\vdash
L				r rock broi								_		

							<u>BORI</u>	NG LO	<u>3</u>	Pa	ge _	L.	of_	1	-	
RO DRIL	JECT LLING	F NAMI F NUM G COMI G RIG:			te 14 olimb Strata		e	BORING N DATE: GEOLOGIS DRILLER:		BER: CNC 14 5/25/99 BDH 8B	ВО	5	_		- -	
			T				RIAL DESCRIP	TION	Γ		PID/F	ID Re	ading	(Ppm	i)	
Sample No. and Type or RQD	(FL)	Slows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft) or Screened Interval	Soil Density/ Consistency	Colo	1		U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ*		
		\angle		1,3	loos	red	The sol	darpy		st- mout	9/					
81			3.5/4	<u> </u>	t		rootlets	00		a monet			ĺ		1	
(B)			, , , ,	2.5	fin	ter	day, soy)	stell froge		145FB05030	j				i	
1611	ц	$\overline{}$					Sard, my	,		morat						
	-				b	you	Clay, sily	al work		wat	34	,				
			2,4/1	1	Mes	m	. 11 - 1	0101		- Marc			w/	h	Boa -	lsgr
90		$\overline{}$	21/14	6.5'		Party (-			- 44	╫	-	_	-		0
1614		-	 .	7.1'	<u> </u>	45.	with	0 0	_	wet	╁		_	Н		
<u> </u>	8	\leftarrow				fn	Sand, sittle	x, st. Clay	g I	wet	+	-				
'	-	<				,					┼	 		-		
—		$\langle \ \ \ \rangle$					TD8				<u> </u>					
L		$\langle \rangle$			· <u> </u>						↓					
											<u> </u>					
											L					
							•									
													_			
										-		П				
													٠.			
,			-								+-	 				
 				ŀ							+-					
 							· _ .				+					
\vdash		$\langle \cdot \rangle$		}							┼┈	-		Щ		
	\dashv	$\langle \cdot \rangle$									╄-	Ļ				
		\angle		[↓_					
′ <u> </u>																
			r rock brok		a borehole	Incres	se reading frequency	if elevated recons	e Mar	ı. Drilli	na A	rea				
Rema			3 O 1001		2 AAI (1101C		er reading fielderich	. Sicrated (epolls)		Background						
Conv	erted	to Wel	l;	Yes			No	Well I.D	.#:					_		

Page ___ of ___

DRIL	LING	RIG:			trata	rol	DRILLER:		R B				
Sample No.		Blows / 6" or	Sample Recovery	Lithology	400		RIAL DESCRIPTION	U		PID/FI	ID Rea	ding	(p
and Type or RQD	(FL) or Run No.	RQD (%)	/ Sample Length	{Depth/Ft. } or Screened Interval	Soil Density/ Consistence y or Rock Hardness	Color		S C S	Remarks	Sample	Sampler BZ	Borehole**	
		\angle	2/1	.ر	losse	mod en	Bilt, w/ worts,		sh noit	0			,
		-	2,3/4'	_/.6_	-		Silt, so/ roots, w/ anders gand, clayey, alm		0 .				L
	4						Sand clayey, also	.	sl: norst to				-
Д							To the second		145FB060405	0			ľ
		$\overline{}$	0.9/4'			150	Wood	1	9/04-0-/				F
	8	\subseteq				tin	Sand, sibry		Wet on 6	0			
		$\overline{}$					TD 8'		_				
							108		<u> </u>				
		\angle											F
Н					<u> </u>			<u> </u>					-
					-								
$\vdash \vdash$									_				ŀ
								<u> </u>				'	$oxed{L}$
		\angle										-	-
Н		$\overline{}$						<u> </u>		H			
													t
		$ \angle $						ļ <u>.</u>					 -
								+-				<u>-</u>	-
			r rock bro				ase reading frequency if elevated repor	<u> </u>	d. Drillin				_

PROJECT	r num	BER:		Ede	<u>' </u>	DA	RING N NTE:		BER: CNC 14 5/26/99 BDH	<i>D V</i>	<u> </u>		_
DRILLING		PANY:	- 8	sten	ng		EOLOGIS	ST:	<u> </u>				
DRILLING	RIG:			totage	ļ		RILLER:		R B	_			_
Sample Depth No. (Ft.) and or Type or Run RQD No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil		RIAL DESCRIPTIO		ນ	Remarks	Sample BD/L	Sampler BZ	Borehole"	Driller 82** 3
		1	1,2	loose	rod	Till sondy	el Du	eu.	A. morst	90			o
		3.8/4	1,2	•		Jac jacky)	0	ð		70			Ť
1					ton	Clary, sardy			S. moist				
9 4						Cay, sardy	lood		145F8070305				
			ارر	_						0			0
			5.5° 6.0'		ton	Wood			most to wet	7	180	N	4
12		2.6/4	,	/	od	gand, il cla	lipiy		moret to wet wet ~ 5'				பீ
1 8	\angle						90			0			
1	\angle									_			
	/		,			TD8'							Ш
				-									Ш
<u> </u>													
	-		ŗ										
	-		}	-							-		\dashv
	-		}	_		(3.5.1)	-	_					H
	\leftarrow		}										
	-		}			<u> </u>				 	-	_	
	$\overline{}$		ł										\dashv
			ŀ										\dashv
			-			112			-				\dashv
													\exists
								_					
	$\overline{}$												\dashv
I			ſ					_					
When rock co "Include moni	tor readin	g in 6 foot			Increa	se reading frequency if elevi	ated reponse	e read	Drillin Background				
Converted			Yes			No -	Well I.D.	#:		\r- F-1			

Well I.D. #:

Converted to Well:

Yes

Nο

	T	RIG:	T		trotag		RIAL DESCR	DRILLER	· 	P B	PID/F	ID Re	ading	(ррт
Sampl No. and Type o	(FL) or Run	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y or Rock Hardness			assification	0 8 0 8 .	Remarks	Запріе	Sampler BZ	Borehole**	Driller B.Z**
			4/4'	I	7	ar	Sand,	f. and		molonolad	40/4	b	w	
7					a de	an	m d'su	f. gind						
	28					0	<i>y</i>	V						
?	30													
							TD 30'							
									\top					
	<u> </u>													
				{										
									\top					
					•		-		$\uparrow \uparrow$		 			
	 			Ì					11		+-			

Page 2 of 2

								BORING LO	3	Pag	e _	<u></u>	of _	<u></u>
	PRO	JECT	Г NAM	E:	C	NE		BORING N	— IUMI	BER: 14B\$9				
			NUM			, ,		DATE:		6/8/99				
			COM RIG:	PANY:		lans.		GEOLOGI DRILLER:	ST:	7 72				
	DRIL	LINC	KIG.			tra to			- i	1. Brand	_	_	_	=
	Sample No. and Type or RQD	Depth (PL) or Run No.	Blows / 5" or RQD (%)	Sample Recovery / Sample Langth	Lithelogy Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color		U S C S •	Remarks	Po sydung ///	Statembler BZ	Egrenole P	De Constant DZ*
		(Chor.	<u> </u>	Asphalt affiner Silty Sant	6"	154		Ш		
		7						\						
		3												Γ
		4		14										
18kg		3		' 7			Oliv	S 1 C1 .		744 L	18	٥	0	0
Ŕ		4	\leftarrow				B.L Bran	Sundy Clay		Moist Soturtul	1.8	Н	$\check{ o}$	۲
ĺ			\leftarrow				Brau	Silty Soul		Do terrotus	\square	\vdash		_
		7	$\overline{}$	2.74				· · · · · · · · · · · · · · · · · · ·	\vdash					<u> </u>
,357		٧	/_	14			t							
'		9	<u>/</u> ,				ßIF.	Soup muck of soul			70	0	ŋ	٥
		10						k						
		10					こさ	Silfy Soul						
		12		4/4			J	ĺ		V				
los														Γ
l										_		Н		
ŀ												Н		
ł			-									Н		
ŀ			$\overline{}$									\vdash		_
ŀ			<			_						\square		-
												Ш		_
J														L
F														
ľ														<u> </u>
ŀ											 	 	\vdash	\vdash
ŀ			$\overline{}$						-	-	\vdash	⊢	<u> </u>	\vdash
L	· When	rock an	vino, cot	er rock bro	kener							<u> </u>		L_
		le moni	_	ng in 6 foo	t intervals			ase reading frequency if elevated repon	se r e a	d. Drillir Background				
	Conv	erted	to We	ell:	Yes '	Tupp	- الرب م	No Well I.C }), #: _.					

ſ						5 tear		RIAL DESCRIPTION			PID/FI	D Re	ding	(pi
	Sample No. and Type or RQD	Depth (Ft) or Run No.	Blows / 6" or RGO (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	0 s c s	Remarks	Sample	Sampler BZ	Borehole"	Outline O'TE
		ı					CK.	2" Our Suly Soul		Diy				
ŀ		ı	/			•	1300	Souly Clay		<u>l</u>				_
L		3						\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'	- 					
×	<u>, </u>	4	\angle	16/4			14				150	0	•	۲
1		S			•		Lt. Pru	Silty Saul		Moist Saturatus	-			Ļ
F	{	7					BIL	Silty Clay		So tuestud		_	 <u>-</u>	ŀ
F		4		414	<u> </u>		77	Silty Sand			990	0	0	۲
1	\dashv	4		117	ŀ		Bru	Dilly sand	- 		-			ŀ
ı	_	ĺο			-						\Box			-
r		(ſ		Corry	Silty Sund wy chi	15	V				ľ
,[12		1.7/4										
L														L
L														_
ŀ									 		-			Ļ
ŀ					_						-			-
-					ļ						-			<u> </u>
\vdash						 -			+				_	}
F						•——						L		-
r									- 				I.——	-
					ļ.						 		 .	ľ
										``				

APPENDIX B MONITORING WELL CONSTRUCTION LOGS

BORING NO .: CNC14- MWO/

OVERBURDEN MONITORING WELL SHEET

	VC .		N: CNC14-MWO/	DRILLER	<u></u>
PROJECT NO.	CNC 14	BORING	CNC14-MWO/	METHOD: BPT	
ELEVATION		DATE	4/21/99	DRILLING HSA	
FIELD GEOLOGIST	Marty Ray	- 		DEVELOPMENT: NA	
					
			-		
			ELEVATION OF TOP OF	SURFACE CASING:	
	M I∢		-ELEVATION OF TOP OF	RISER PIPE:	Flush
	∕ I ┌── I◀		- STICK-UP TOP OF SURF	ACE CASING:	
	′ ┃		-STICK-UP RISER PIPE:		
	II II∢		-1.D. OF SURFACE CASING	g: 81	
			TYPE OF SURFACE CAS	ing: Steel	
		ļ	myn-hole wi	th cover	_
GROUND V		X	TYPE OF SURFACE SEAR	: concrete pal	
ELEVATION			2'X2'X6"		}
ELEVATION		ا مسم			
			-RISER PIPE I.D.:	a*	_
			TYPE OF RISER PIPE:	sch 40 pvc	_
					_
			BOREHOLE DIAMETER:	4.25 inch	_
			TYPE OF SEAL: 91	out 40 811 615	
			· · · · · · · · · · · · · · · · · · ·		
					116"
			ELEVATION / DEPTH OF	SEAL:	1/6
			TYPE OS SEAL: 80	65 3440	
1					_
					3'0"
			DEPTH TOP OF SAND PA	ACK:	30
			SI SIMTION (DESTINATO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41,00
			ELEVATION / DEPTH TOP	OF SCREEN:	7,55
			-TYPE OF SCREEN:	Sch 40 PVC	
			THE OF SCILLIA.	OCH 7	~
		İ	SLOT SIZE X LENGTH:	Sch 40 PVC 10 slot x 10'	
					~
			I.D. OF SCREEN:	a" .	
					-
		1		, ,	
1			TYPE OF SAND PACK:	20/36 54Md	
					_
		i			
					1 1
			ELEVATION / DEPTHBOT	TOM OF SCREEN:	1410"
	7,		ELEVATION / DEPTH 801	TTOM OF SAND PACK:	14'16"
			TYPE OF BACKFILL BELG	W OBSERVATION	
			MELT	30 Sund.	ایرر
			ELEVATION / DEPTH OF	HOLE:	1416"
	,				

OVERBURDEN MONITORING WELL SHEET

PROJECT	CNC	LOCATION		DRILLER R Luller
PROJECT NO. ELEVATION	·	BORING	8/25/59	METHOD: DETAILLING HSA
	GIST J_Ha		- S(- B()]	DEVELOPMENT: NA
	2324.3			
				410
			ELEVATION OF TOP OF	
			ELEVATION OF TOP OF STICK -UP TOP OF SURI	7/2
	.		STICK-UP RISER PIPE:	
]◀	I.D. OF SURFACE CASIN	G: 6°
	11		TYPE OF SURFACE CAS	ing: Flush mount
GROUNI	W		TYPE OF SURFACE SEA	Li Concrete
ELEVAT	A33332332 VIII			
22.3			RISER PIPE I.D.:	<u> </u>
			TYPE OF RISER PIPE:	PIC
			- BOREHOLE DIAMETER:	
			— TYPE OF SEAL:	cement
				SEAL: / 2
	<i>122</i> 2		ELEVATION / DEPTH OF TYPE OS SEAL:	fine sand
				77723445
		4	DEPTH TOP OF SAND PA	ACK: <u>3</u>
			ELEVATION / DEPTH TO	P OF SCREEN: / 4
			TYPE OF SCREEN:	PUC
			SLOT SIZE X LENGTH:	D.01 (10ft
			I.D. OF SCREEN:	2!
				70/23
			TYPE OF SAND PACK:	20/30
			-	
				م ومرو
			ELEVATION / DEPTHBO	
	**************************************		- ELEVATION / DEPTH BO	
			TYPE OF BACKFILL BEL	OW DESERVATION
	1.500	-	WELL DEPTH OF	HOLE:

CNC14-BORING NO.: <u>MW03</u>

OVERBURDEN MONITORING WELL SHEET

PROJECT CUC PROJECT NO. ELEVATION FIELD GEOLOGIST J. Hote	BORING NW 3 METHODERS	Fuller 15A
GROUND V	ELEVATION OF TOP OF SURFACE CASING: ELEVATION OF TOP OF RISER PIPE: STICK-UP TOP OF SURFACE CASING: STICK-UP RISER PIPE: I.D. OF SURFACE CASING: TYPE OF SURFACE CASING: TYPE OF SURFACE SEAL: COMCIN	
ELEVATION	RISER PIPE I.D.: TYPE OF RISER PIPE: BOREHOLE DIAMETER: TYPE OF SEAL: Cement	
	ELEVATION / DEPTH OF SEAL: TYPE OS SEAL: Fine sand	11.5 - - 2.5
	ELEVATION / DEPTH TOP OF SCREEN:	/3_5
	TYPE OF SCREEN:	_
	SLOT SIZE X LENGTH: D.O. X / C	— 544
	TYPE OF SAND PACK: 20/30	
	ELEVATION / DEPTHBOTTOM OF SCREEN: ELEVATION / DEPTH BOTTOM OF SAND PACK: TYPE OF BACKFILL BELOW OSSERVATION WELL:	113.5
	ELEVATION / DEPTH OF HOLE:	

APPENDIX C FIELD SAMPLING LOGS AND LABORATORY DATA

Project Site Name: Sample ID No.: Sample Location: Project No.: Sampled By: C.O.C. No.: [] Surface Soil Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Date: 2 99 Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Time: dk br. Clayey Sand Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Description (Sand, Silt, Clay, Moisture, etc.) Depth Color Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis Container Requirements Collected Other RTEX/EDB encores DUD encores PAH 402 DOD 402 407 402 **OBSERVATIONS / NOTES:** MAP: DUPLICATE Circle if Applicable: Signature(s): 1454 MS/MSD Duplicate (D No.: 145LB02P203D

					Page	e <u>l</u> of <u>l</u>
Project Site Nam Project No.:	oject Site Name: Zone !		3	Sample ID Sample Lo	cation: 80	<u>84403</u> 40
[] Surface So ∰ Subsurface				C.O.C. No.		
Sediment Other: QA Sample					mple: oncentration oncentration	
GRAB SAMPLE DAT	`A:				_	
Date: 6 2	99	Depth	Color	Description	(Sand, Silt, Clay, Moi	isture, etc.)
Time: IS 05 Method: Monitor Reading (ppn	n):	3-4'	br.	Silta	1 sand	
COMPOSITE SAMPL						
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION	ON INFORMA	TION:				
	Analysis		Container Requ	uirements	Collected	Other
P	A17		1 4	02		
	TEX I	FDB	4 course			
6	rain	81.7x	1 32 0	· Z.		
	_					
OBSERVATIONS / N	OTES:			MAP:		<u> </u>
•						
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate I	D No.:		14 h	hli	

					Pag	e / of /
Project Site Nar Project No.: [] Surface So \$\forall \text{Subsurface}	lic	Zone	ß	Sample ID Sample Lo Sampled E C.O.C. No	No.: 1452 ocation: 1600 ocatio	8 \$5 \$3 \$4 : 14 B o S 1 Kl
[] Sediment [] Other. [] QA Sample		W			ample: oncentration concentration	

Date: 6/2/99 Time: /5/25	7	Depth	Color		(Sand, Silt, Clay, Mo	elsture, etc.)
Time: <u>/525</u> Method:		3-4'bgs	13.0WL	Clayey		
Monitor Reading (ppr		3-4095		Traces	;/ /	
Haral III						
Oate:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Method:						
	<u> </u>	<u> </u>				
Monitor Readings						
(Range in ppm):				<u> </u>		· · · · · · · · · · · · · · · · · · ·
	<u> </u>		 			
	Analysis		Container Requ	irements	Collected	Other
BTEX!	EDB		4-59.6	ENCOV-1		
PAH	·		1 403			
Toc/F	<i>b</i> <u>C</u>		1402			
				<u> </u>		1
				_		
-						
·				_		+
		····				
	Oles					
				UII		
				Signature(s):	, 0	
MS/MSD	Duplicate !!	D No.:			1 11/	
			<u> </u>	LMv_t	white.	

				<u> </u>	Pag	
Project Site Nar Project No.:		Zone	ß	Sample ID Sample Lo Sampled E	cation : <u>14 s 4 1</u> By: <u> </u>	3466465 306
[] Surface So ∰ Subsurface				C.O.C. No	.:	
[] Sediment	B 0011			Type of Sa		
[] Other: [] QA Sampi	e Tvne				oncentration concentration	
-						
Date: 6/2/9		Depth	Color	Description	(Sand, Silt, Clay, Mo	lature, etc.)
Time: /54e			,		towner one or	,
Method: Monitor Reading (ppr		4-5 695	brown	Souly	clay	
Company (b)		I				
Date:	Time	Oepth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
	<u> </u>					
Method:			<u> </u>			
Monitor Readings		<u> </u>		<u>!</u>		
(Range in ppm):					<u> </u>	
national Source Substitutes on station	Analysis		Container Requ	uirements	Collected	Other
	(FDB		4-059 En	ca		
PA-1-	1	<u> </u>	1402			
		-				
			ļ			<u> </u>
	·				 	
		_				
				0437		
adecade contrata de destruir de la contrata del la contrata de la						
		_				
MS/MSD	Duplicate			aignature(s): /	Lalli.	
ins/mat/	Pupicate	·- 110··		1/1/	L OV	
	1			1 11/1/h //	MACH LA	

MONITORING WELL DEVELOPMENT RECORD

Well:	Depth to Bottom (ft.): 13-95	Responsible Personnel: Responsible Personnel:
Site:	Static Water Level Before (ft.): 4.4	Drilling Co.: Cystom Drilling
Date installed:	Static Water Level After (ft.):	Project Name:
Date Developed: 7-2-99	Screen Length (ft.): 10-6	Project Number:
Dev. Method: Pump	Specific Capacity:	
Pump Type:	Casing ID (in.):	

Time	Estimated	Cumulative	Water Level	Temperature	рН	Specific	Turbidity		Remarks
	Sediment	Water	Readings	(Degrees C)		Conductance	(NTU)	(-	odor, color, etc.)
	Thickness	Volume	(Ft. below TOC)			(Units)			_
	(Ft.)	(Gal.)							D. O.
1145		1		37.1	6.09	.588	999	Creek	2.77
1150		10		22.5	6.13	.576	999	4'	5.50
1154		నం		221	6.06	,493	999	21	5. 55
1156		30		23.0	6.01	.475	999	ıı	5.31
1158		40		<u> 22.1</u>	6.08	·478	& Sec	א	5.55
1201		45		21.9	603	.467	600	· u	5.25
1205		50		22.1	6.01	.447	377	2.2	5. 20
1207		5.5		22.1	5.99	.442	204	12	5.28
1213		65		28.0	5.96	.475	650	٩	5.40
12/8		75		7.15	599	.461	749	4	5.11
1221		80		33.4	6.03	. 483	561	71	5.23
/ 228		85		21.8	5.89	.481	306	, L	4.11
1230		95		21.6	5.86	.465	121	11	4.15
1231		100		21.5	5.86	,473_	9	cloudy	460
1234	_	105		21.6	5.90	.473		n e	4.56
								Total	Purced
								, -	sals.

Prum # DW-CNC14-MWOI

MONITORING WELL DEVELOPMENT RECORD

Page	of	
0 -		

Well: CNC14-MW2	Depth to Bottom (ft.):	Responsible Personnel: J. Hafer
	Static Water Level Before (ft.): 5-00	Drilling Co.: Custom
Date Installed: #(25/99	Static Water Level After (ft.):	Project Name: CNC
Date Developed: #9 8/24/59	Screen Length (ft.): 10 ft	Project Number: 014/
Dev. Method: Quap	Specific Capacity:	
Pump Type:	Casing (D (in.): 2"	

Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	ρН	Specific Conductance (Units)	Turbidity (NTU)	Remarks (odor, color, etc.)
1029		0	5.00	25,2	5.66	1.54	>999	Gray
1037		30	10.5	23,9	5.83	0.609	7999	EFLY
1039		40	10.8	23.85	5,83	0.564	774	Gray
1045		100	11.0	23.6		0.543	486	Gray
1050		75	9,75	23.8	5.80	0.543	409	Gray
1055		95	10.0	23.7	5.80	0.533	316	12+ 10Call
1102		115	10.20	23-7	5:79	0.530	270	let groy
1187		130	10.00	23.7	5.80	0.529	206	let gray
		ļ			ļ			0 9
		<u> </u>			ļ	[
		 						
					<u> </u>	<u></u>		
								
		 		ļ	 		ļ	
		 	ļ	ļ	 			
					ļ			
	ļ				ļ <u> </u>			
					↓	<u> </u>		

MONITORING WELL DEVELOPMENT RECORD

Page	of	

Well: CNC/4-NW3		Responsible Personnel: A Haf-r
	Static Water Level Before (ft.): 4-2(Drilling Co.: Costom Drilling
Date Installed: 8/25/99	Static Water Level After (ft.):	Project Name: _CNC
Date Developed: 8/26/99	Screen Length (ft.): 10 ft	Project Number: 514/
Dev. Method: PUND	Specific Capacity:	·
Pump Type:	Casing ID (in.): 2"	

Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	ρΗ	Specific Conductance (Units)	Turbidity (NTU)	Remarks (odor, color, etc.)
11(5		10	11.2	23,2	5.84	0.585	>999	Gray
1123		3.5	il. 5	22-8	5.83	n_555	>999	Grav
1129		65	10.8	22.フ	5.85	0.53(189	1gt gray
1132		85	10.9	22.7	5.84	0.527	54	Clear
		ļ						
						· · · · · · · · · · · · · · · · · · ·	ļ	
							ļ	
					<u> </u>			
			<u> </u>		ļ]	
	<u> </u>				ļ			
					1			
	,		<u></u>		<u></u>		_	

GROUNDWATER LEVEL MEASUREMENT SHEET

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1- 3-40 (52,000)	34 TO 14 TO	Court Court Court Court Court	Designation of	为主席公式去字式包装			
Project Name: Location:		81 te 14			Project No.:	Ø1	41	1
		81 te 14 CNC Charleston - Ptly Charleston You _ No _ n:10			Project No.: Personnel:	honas TEna		
Weather Conditions:			- Itly	Christia	Measuring De	vice:	7	
Tidally Influenced:		Yes	No	n:10	Remarks:			·
· · · · · · · · · · · · · · · · · · ·					- -			
Well or	•		Elevation of	Total	Water Level	Thickness of	Groundwater	
Piezometer	Date	Time	Reference Point		Indicator Readin	1	Elevation	Comments
Number			(feet)*	(feat)*	(feet)*	(feet)*	(feet)*	
(1 Klosust	a/0/.	daic		14.26	4.71		· - ·	-
(NCH HIM)	110/99	9115		17.28				
(NCHMW) MWØZ	9/8/94	p917		14.35	5.15			
	9/8/99	0918		13.07	4.20			
711~93	7019			13,7	1,24			
		-						
							·	
		<u> </u>						
				-				
								-
						 		
					1			
		 			 			
		ļ						
			 -	 		-		
		 		 	 	 		
		 		 	 		 	
		L		ļ				
	1	1						
		 		-			 	
				<u> </u>		<u> </u>		<u>L</u>
* All measurements I		04 L						. of

Tetra Tech NUS, Inc.

Tetra Tech NUS, Inc. Page 1 of 2										
Project Site Name: C NC Side 14						Sample ID N	o.: 146L	14 CLM 0101		
Project No.: No 141				Sample Location: C				incld Whal		
Sampled By: JJM CTT.						Duplicate:				
Field Analyst: TTM				,		Blank:				
	checked as per (ials):	(Illu					
1 15 1 15 1 15 1 1 1 1 1 1 1 1 1 1 1 1										
Date:	1/8/94	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	рН	
Time:	1225	(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)	
	erisfulliz	ાયજ		0.418	25.0	প	2.39	_	666	
18.68.3.89.3.89.3.53.5	CTION/ANALYSIS I	NFORMATIO								
Dissolved Ox					T		•	14:48		
Equipment:	HACH Digital Titrate	or OX-DT	CHEMetric	s (Range: _	mg/L)	•	Analysis Time:	- 1010	,	
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration		
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L		
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L		
CHEMetrics: 0	mg/L								.	
Notes:		_								
Alkalinity:							Analysis Time:	10:18		
Equipment: (HACH Digital Titrato	A AL-DT	CHEMetrics	s (Range: _	mg/L)		Filtered:			
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration		
	10-40 mg/L	100 ml	0.1600 N	0.1		& &	x 0.1	= mg/L		
	40-160 mg/L	25 ml	0.1600 N	0.4		& &	x 0.4	= mg/L		
\square	100-400 mg/L	100 ml	1.600 N	1.0	0	8 207	x 1.0	= フ ゆ T _{mg/L}		
	200-800 mg/L	50 ml	1.600 N	2.0		&	x 2.0	= mg/L		
	500-2000 mg/L	20 ml	1.600 N	5.0		<u> </u>	x 5.0	= mg/L		
	1000-4000 mg/L	10 ml	1.600 N	10.0		& &	x 10.0	= mg/L		
		<u> </u>	Τ				7			
1	Parameter:	Hydroxide O		onate		arbonate	_			
	Relationship:]	•	2	67				
CHEMetrics:	mg/L									
Notes: Standard Additions	. T#mm	t Molarity:		Digits Requ	irad: 1et ·	2nd.;	3rd.;		-	
		violesty		nifius vedr	eu. 13L	4INJ.,	Jru.,			
Carbon Dioxide: Equipment: HACH Digital Titrator CA-DT CHEMetrics (Range:mg/L) Analysis Time:										
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count		Concentration	1	
	10-50 mg/L	200 ml	0.3636 N	0.1	1		x 0.1	= mg/L	1	
	20-100 mg/L	100 ml	0.3636 N	0.2	1		x 0.2	= mg/L	1	
团	100-400 mg/L	200 ml	3.636 N	1.0	1		x 1.0	= mg/L	1	
$\overline{\mathbf{v}}$	200-1000 mg/L	100 ml	3.636 N	2.0		362	x 2.0	= 52 y mg/L]	
CHEMetrics:	mg/L								-	
Notes:	_ _									
Standard Additions	s: Titran	t Molarity:		Digits Requ	uired: 1st.:	2nd.:	3rd.:	-	-	

Tetra Tech NUS, Inc.

Page $\underline{2}$ of $\underline{3}$ 14 GLM 0101 CNC 5ite 14 Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: Duplicate: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Sulfide (S²): Analysis Time: DR-700 **HS-C Color Chart HS-WR Color Wheel** Equipment: Program/Module: 610nm Other: 0.13 Concentration: mg/L Filtered: Notes: Sulfate (S0,27): DR-700 Equipment: DR-8 _ _ Analysis Time: Program/Module: 91 Filtered: Concentration: mg/L Standard Solution: Results: Standard Additions: Digits Required: 0.1 mk 0.2ml;_____0.3ml;_____ Notes: Nitrite (NO2-N): Analysis Time: DR-700 Filtered: Equipment: Other: Program/Module: 6,048 Concentration: Reagent Blank Correction: mg/L Standard Solution: Notes: Nitrate (NO3 -N): Analysis Time: DR-8__ Equipment: DR-700 Other: Filtered: 55 Program/Module: Concentration: mg/L Nitrite Interference Treatment: Reagent Blank Correction: L Standard Solution: Digits Required: 0:4[ml:______ 0.2ml:_____ 0.3ml:____ Standard Additions: Notes:

Page 3 of 3Tetra Tech NUS, Inc. 14 GLM 0101 CNC 5計を14 Sample ID No.: Project Site Name: CNC14 MWOI Project No.: Sample Location: Sampled By: Duplicate: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Manganese (Mn²⁺): HACH MN-5 Analysis Time: DR-700 Other: Equipment: Program/Module: 525nm 0'0 Concentration: mg/L Standard Solution: Results: Reagent Blank Correction: Standard Additions: Digits Required: 0.1ml:_____ 0.2ml:_ 0.3ml: Notes: Ferrous Iron (Fe²⁺): OR-850 IR-18C Color Wheel Analysis Time: DR-700 Other: Equipment: 33 Program/Module: 500nm 3.ŏЧ Concentration: mg/L Filtered: Notes: Hydrogen Sulfide (H2S): Analysis Time: 11:39 Equipment: Other: mg/L Concentration: Exceeded 5.0 mg/L range on color chart: Notes: QA/QC Checklist: All data fields have been completed as necessary: Correct measurement units are cited in the SAMPLING/DATA block: Mulitplication is correct for each Multiplier table: Final calulated concentration is within the appropriate Range Used block: Alkalinity Relationship is determined appropriatly as per manufacturer instructions: QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the preject planning documents: Nitrite Interference treatment used for Nitrate test if Nitrite was detected: Title block is initialized by person who performed the QA/QC Ckecklist:

Standard Additions:

Titrant Molarity:

FIELD ANALYTICAL LOG SHEET

GEOCHEMICAL PARAMETERS Page $\frac{1}{2}$ of $\frac{3}{2}$ Tetra Tech NUS, Inc. Pl 8612 245 Sample ID No .: 14 GLM 0201 Project Site Name: NO141 Project No.: Sample Location: Sampled By: Duplicate: $\omega_{\mathcal{T}}$ Field Analyst: Blank: TUM Field Form Checked as per QA/QC Checklist (initials): 9/8/90 Color ORP (Eh) S.C. Temp. DO **Turbidity** Sal. pН 1430 Time: (°C) (Visual) (mS/cm) (SU) (+/- mv) (NTU) (Meter, mg/l) (%) 22.9 peristaltic 6.52 Method: clear 0.73 SAMPLE COLLECTION/ANALYSIS INFORMATION: Dissolved Oxygen: 14:45 CHEMetrics (Range: 0 ~ (Analysis Time: Equipment: HACH Digital Titrator OX-DT mg/L) Cartridge Range Used: Concentration Range Sample Vol. Multiplier **Titration Count** Multiplier x 0.01 1-5 mg/L 200 ml 0.200 N 0.01 mg/L 2-10 mg/L 100 ml 0.200 N 0.02 x 0.02 mg/L CHEMetrics: O. 4 Notes: Alkalinity: Analysis Time: HACH Digital Titrator AL-DT Equipment: CHEMetrics (Range: _ Filtered: Range Range Used: Sample Vol. Cartridge Multiplier **Titration Count** Multiplier Concentration 0.1600 N 10-40 mg/L 100 ml x 0.1 0.1 8 = mg/L & 40-160 mg/L 25 ml x 0.4 0.1600 N 0.4 mg/L ▽ 100-400 mg/L 100 ml 1.600 N 1.0 x 1.0 mg/L O 308 ₌ዛାଢ _{mg/L} 200-800 mg/L 50 ml 1.600 N 2.0 & x 2.0 500-2000 mg/L x 5.0 20 ml 1.600 N 5.0 & = mg/L 1000-4000 mg/L 10 ml 10.0 x 10.0 1.600 N mg/L Parameter: Hydroxide Carbonate **Bicarbonate** 0 Relationship: CHEMetrics: ma/L Notes: Standard Additions: Titrant Molarity: Digits Required: 1st.: 2nd.: 3rd.: Carbon Dioxide: 11:09 Equipment: HACH Digital Titrator CA-DT CHEMetrics (Range: mg/L) Analysis Time: Range Used: Range Sample Vol. Cartridge Multiplier Titration Count Concentration 10-50 mg/L 200 ml 0.3636 N 0.1 x 0.1 mg/L 20-100 mg/L x 0.2 100 ml 0.3636 N 0.2 mg/L 100-400 mg/L 200 ml x 1.0 mg/L 3.636 N 1.0 200-1000 mg/L 100 ml 3.636 N 2.0 x 2.0 mg/L mg/L CHEMetrics:

Digits Required: 1st.:

2nd.:

3rd.:

Tetra Tech NUS, Inc.	Pageof
Project Site Name: CNCSITE 14 Project No.: N-0141 Sample ID	A 14 A 4
The state of the s	`
Sampled By: TTM FTT Duplicate:	
Field Analyst: TTM Blank:	
Field Form Checked as per QA/QC Checklist (initials):	
8 978 82 18 300 14 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	
Sulfide (S ²):	.0166
Equipment: DR-700 DR-850 HS-C Color Chart HS-WR Color Wheel	Analysis Time: 12155
Program/Module: 610nm 93 Other:	<u></u>
Concentration:mg/L Notes:	Filtered:
Sulfate (S0 ₄ ²):	
Equipment: DR-700 DR-8 Other:	Analysis Time:
Program/Module: 91	
Concentration: mg/L	Fittered:
Standard Solution: Results:	
Nitrite (NO ₂ -N):	Analysis Time: 14,50
Equipment: DR-700 Other.	Filtered:
Program/Module: 60	
Concentration: 0,055 mg/L Reage	ent Blank Correction;
Standard Soluti	
Notes:	
	
Nitrate (NO ₃ '-N):	Analysis Time:
Equipment: DR-700 DR-8 Other:	Filtered:
Program/Module: 55	
Concentration: mg/b	
Nitrite Int	erference Treatment:
Standard Solution: Results: Reag	ent Blank Correction:
Standard Additions: Digits Required: 0.1ml: 0.2ml: 0.3ml:	
Notes:	_

Page 3 of 3 Tetra Tech NUS, Inc. CNC 5178 14 Sample ID No.: **Project Site Name:** N6141 Sample Location: Project No.: I MIT Sampled By: **Duplicate:** Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLECD LECTION ANALYSIS INFORMATION : THE RESERVE AND A SAMPLE CO. Manganese (Mn²⁺): DR-850 Equipment: DR-700 HACH MN-5 Other: Program/Module: 525nm 41 Concentration: mg/L Filtered: Digestion: Standard Solution: Reagent Blank Correction: Results: Digits Required: 0.1ml: 0.2ml; Standard Additions: Ferrous Iron (Fe²⁺): QR-850 IR-18C Color Wheel Equipment: **DR-700** Other: Program/Module: 500nm 3,36 Concentration: mg/L Filtered: 4IMis Notes: Hydrogen Sulfide (H₂S): 1147 Equipment: Other: 0.5 Concentration: Exceeded 5.0 mg/L range on color chart: Notes: QA/QC Checklist: All data fields have been completed as necessary: Correct measurement units are cited in the SAMPLING/DATA block: Mulitplication is correct for each Multiplier table: Final calulated concentration is within the appropriate Range Used block: Alkalinity Relationship is determined appropriatly as per manufacturer instructions: QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning documents: Nitrite Interference treatment used for Nitrate test if Nitrite was detected: Title block is initialized by person who performed the QAQC Ckecklist:

Notes:

Standard Additions:

Titrant Molarity:

FIELD ANALYTICAL LOG SHEET

GEOCHEMICAL PARAMETERS Page <u>)</u> of _3 Tetra Tech NUS, Inc. CNE 517 14 Sample ID No.: 14 Gly 0301
Sample Location: CNC 14 MW63 Project Site Name: Nº0141 Project No.: Sampled By: Duplicate: ろてへ Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLING DATA: 9*)* **6**|44 Date: Color ORP (Eh) S.C. DO Temp. **TurbIdity** Sal pН 1210 Time: (Visual) (+/- mv) (mS/cm) (°C) (NTU) (Meter, mg/l) (%) (SU) 18455 JULY 5 Clear 1.27 60 Method: 22.0 Ð SAMPLE COLLECTION/ANALYSIS INFORMATION: Dissolved Oxygen:) Y!*5*3 CHEMetrics (Range: 1~12 mg/L) HACH Digital Titrator OX-DT Analysis Time: Equipment: Range Used: Sample Vol. Cartridge Multiplier Titration Count Range Multiplier Concentration 1-5 mg/L 0.200 N x 0.01 200 ml 0.01 mg/L 0.200 N x 0.02 2-10 mg/L 100 ml 0.02 = mg/L O_mg/L CHEMetrics: Notes: Alkalinity: 10:50 Analysis Time: Equipment: **HACH Digital Titrator AL-DT** CHEMetrics (Range: _ Filtered: Cartridge Range Used: Sample Vol. Multiplier **Titration Count** Range Multiplier Concentration 10-40 mg/L 100 ml 0.1600 N x 0.1 0.1 mg/L & 140 x 0.4 40-160 mg/L 25 ml 0.1600 N 0.4 mg/L 100-400 mg/L 100 ml 1.600 N 1.0 x 1.0 & mg/L 200-800 mg/L 50 ml 1.600 N 2.0 & x 2.0 mg/L x 5.0 500-2000 mg/L 20 mi 1.600 N 5.0 & mg/L 1.600 N x 10.0 1000-4000 mg/L 10 ml 10.0 & mg/L Parameter: Hydroxide Carbonate Bicarbonate Relationship: CHEMetrics: mg/L Notes: Standard Additions: Titrant Molarity: Digits Required: 1st.: 2nd.: 3rd.: Carbon Dioxide: HACH Digital Titrator CA-DT Equipment: CHEMetrics (Range: Sample Vol. Range Used: Range Cartridge Multiplier Titration Count Concentration 10-50 mg/L 200 ml 0.3636 N x 0.1 0,1 mg/L 100 ml 0.3636 N 20-100 mg/L 0.2 x 0.2 mg/L 100-400 mg/L 200 ml 3.636 N 1.0 x 1.0 = mg/L ₩ X 376mg/L 200-1000 mg/L 100 ml 3.636 N 2.0 x 2.0 CHEMetrics: ma/L

Digits Required: 1st.:

2nd.:

3rd.:

Tetra Tech NUS, Inc.

Page $\frac{2}{3}$ of $\frac{3}{3}$

Project Site Name: Project No.: Sampled By: Field Analyst: Field Form Checked SAMPLE COLLECTIONA Sulfide (S ²):		ecklist (initials):	Sample I Sample I Duplicate Blank:	
Equipment: DR-700 Program/Module: 610nm	0R-850 93	HS-C Color Chart	HS-WR Color Wheel Other:	Analysis Time:
Concentration:	, Dmg/L			Filtered:
Strifate (S0 ₄ ²): Equipment: DR-700 Program/Module: Concentration:	DR-8 91 	Other:		Analysis Time:
Standard Solution: Standard Additions: Notes:	Results Digits Requi		0.2ml;0.3ml;	
Nitrite (NO ₂ '-N): Equipment: DR-700 Program/Module: Concentration: O	034 mg/L	Other:	Re Standard Sol	Analysis Time:
Nitrate (NO ₃ -N): Equipment: DR-700 Program/Module: Concentration:	DR-8 55	Other:		Analysis Time: Filtered:
Standard Solution:	Resultu			Interference Treatment:

Page 3 of 3Tetra Tech NUS, Inc. 14 GLM0301 41 stiz 345 Sample ID No.: Project Site Name: No141 Project No.: Sample Location: \mathcal{M} Sampled By: **Duplicate:** MTT Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION ANALYSIS INFORMATION: Manganese (Mn²⁺): HACH MN-5 Equipment: DR-700 Other: Program/Module: 525nm mg/L Concentration: **Filtered**: Digestion: Reagent Blank Correction: Standard Solution: Results: Digits Required: 0.1ml:____ 0.2ml:___ Standard Additions: 0.3ml:_ Notes: Ferrous Iron (Fe²⁺): Equipment: DR-700 DR-850 IR-18C Color Wheel Other: Program/Module: 500nm Concentration: mg/L Filtered: Notes: Limb Hydrogen Sulfide (H₂S): Analysis Time: \) '. 55 Equipment: Other: v. 1 Concentration: mg/L Exceeded 5.0 mg/L range on color chart: Notes: QA/QC Checklist: M All data fields have been completed as necessary: IΔĮ Correct measurement units are cited in the SAMPLING,DATA block: Mulitplication is correct for each Multiplier table: Final calulated concentration is within the appropriate Range Used block: Alkalinity Relationship is determined appropriatly as per manufacturer instructions: QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning documents: Nitrite Interference treatment used for Nitrate test if Nitrite was detected: Title block is initialized by person who performed the QA/QC Ckecklist:

GROUNDWATER SAMPLE LOG SHEET

Page / of /

Project Site Project No.				<u> </u>			Location:	MU-1 FU/RU		
[] Domestic Well Data Monitoring Well Data [] Other Well Type: [] QA Sample Type:		·				Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration				
SAMPLING DA	TA:			-						
	13-99	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other	
Time:	255	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA	
Method:								`		
PURGE DATA:		T				,				
	3-99	Volume	pH	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other	
Method: S/o	w Phree	Inițial	6.14	.599	21.4	9	2.44			
Monitor Reading	g (ppm):	1	6.16	.59a	31.0	_3	2.23			
Well Casing Dia	meter & Material	2	6.20	<u>.567</u>	P.06	Ø	2.84			
Туре:		3	6.30	.548	21.3	Ø	a.86			
Total Well Depti	h (TD):	14-26			• •	•			·	
Static Water Lev	vel (WL):	4.67								
One Casing Vol	ume(gal/L):/556	#15								
Start Purge (hrs		1115								
End Purge (hrs)	:	1255								
Total Purge Tim	e (min):	7								
Total Vol. Purge	ed (gal/L):									
SAMPLE COLL	ECTION INFORMA	TION:								
	Analysis		Preser	vative			equirements		Collected	
BIE	Wup. MT	B K	HC1 3x4			mlv				
	<i>#</i>		None 3x			Lan				
Lec	محال		HNO3 250			ml. pl	_			
					`					
				_						
OBSERVATION	IS (NOTES.								_	
OBSERVATION	- NO1E5:									
Circle if Applica	Circle if Applicable:					Signature(s):				
MS/MSD	MS/MSD Duplicate ID No.:					Ex J. Hamer				

GROUNDWATER SAMPLE LOG SHEET

Page of ___

Monito Mo			Site 19	 		Sample C.O.C. Type of [] Low	Location: d By:		14		
SAMPLING DA	NTA:									\dashv	
Date:	9/8/99	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other	-	
Time:	12 25	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA	- 1	
Method:	PeristalHc	C(601	6.60	0,48	22.0	Ø	2.39	ĺ	_		
PURGE DATA:	:										Llmin
Date: 9-8-6		Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	F(low R
Method:	eristalke	Initial	6.18	-610	೩೩.೩	1240	0.74			&	50
Monitor Reading	g (ppm): 🎉	1	6.48 <u> </u>	.638	<i>2</i> 2.3	0	0.84	_	1.53 90	<u>. </u>	50
_	ameter & Material	2	6.47	00ء	21.9	0	0.75		3.00 gal	8	750
Type: Z ^u P	VC.	3	6.61	-671	ರ್.೮	٥	0.76		4.59 90		60
Total Well Dept	h (TD): 14.26	4	6.57	810.	22.0	0	1.36e		6.42 ap	1 8	(20
Static Water Le	vel (WL): 4.71	5	6.60	618	22.0	O	2.39		7.1500	1 8	50
One Casing Vol	lume@a/L): 1,53										
Start Purge (hrs	s): 0930										
End Purge (hrs)	: 1005										
Total Purge Tim	ne (min): 32										
	ed (gal/L): ついら		_								
SAMPLE COLL	ECTION INFORMA	TION:									
	Analysis		Preser	vative			equirements	45.5 -	Collecte	d	
	ντον ζ ΑΙΑ					200		ytic	146C	100	
•	DB WTBE T	3/21.24	Ho	- (40 4		yer Z	Mitter I		
	s. Methons	O(n) You	170				me glas		4-5	No	
13/3	5. /o(c) 0.2 -(C		',			1	<u> </u>	<u>, </u>	1 7 3		
<u>-</u>			-								
										_	
									<u> </u>		
									 		
OBSERVATION	NS / NOTES:								<u> </u>	-	
		11140			-						
DTW	Day Volu	WIC									
5.20 5.22	0941 2										
5.23	0941 2 0948 3 0955 4										
)955 4										
5.22	002 5										
Circle if Applic						Signature(s	s):				
MS/MSD	Duplicate ID No.:					\name{\gamma}_{\alpha} \.	Ro	~ U~			
								March			

GROUNDWATER SAMPLE LOG SHEET

Page \ of \

Project Site Project No.		CNC	Site	Site 14 No.141		Sample	Sample Location: Sampled By:		CNC14MWDA STREIY TIM FTT	
Monito Other	stic Well Data oring Well Data Well Type: ————————————————————————————————————					[] Low	Sample: Concentra	tion		
	• • • • • • • • • • • • • • • • • • • •					. [] nigi	n Concentra	ation		
SAMPLING DA										
Date: 989		Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time: 🔗	1430	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA.	
	ser){HKIHE	C160 A	6.52	1.24	27.9	Ø	0.73			
PURGE DATA:						Г	,			ML) min Flow Rat
Date: 980		Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	4
Method:	erishiltz	Initial	6,50	1.45	23.6	0	1.28			750
Monitor Reading	g (ppm): <i>9</i>	1	6.5le	1.44	23.3	_0_	1,55		1:47 901	"
	meter & Material	2	6.5°g	1.36	23.C	0	1.31		294901	i i
Туре: 2 11	PVC	3	6.54	1.27	23. 0	0	1.14		4.41 gal	n
l	h (TD): 14_35	4	6.53	1.24	22.9	0	1.08	_	5.88gal	1)
Static Water Le	vel (WL): 5.15	5	6.52	1.24	22.9	0	0.73		7.35gal	
One Casing Vol	ume(@3/L): , 47								3	''
Start Purge (hrs										
End Purge (hrs)	•									
Total Purge Tim									-	
Total Vol. Purge	- 4									
	ECTION INFORMA	TION:						<u> </u>		1
	Analysis		Preser	vative		Container R	equirements		Collected	1
Δ	nim (ζών	al plus	ہمو	40	
	PAH		<u>ب</u>				1 C Amber			
	OB MTBG, T		H			web			\\delta_{\infty}	
Q	is. Me Hune	<u> </u>	М	<i>il</i>	<u> </u>	بهر ا	L 9(0	1 55	762	
									 	4
									 	1
						-			 	1
			_						 	1
					· · · · · · · · · · · · · · · · · · ·				 	1
									1	1
					İ			_	1	1
OBSERVATION	IS / NOTES:									
Volume	Time D	TW								
1		5.49		4 0	959 5	53				
a		5.52			ob 5.	53				
3		.52		5 10	Vu 9,	,				
9	2	. ••								
Circle 16 4 11	ahla:					Či			_	-
Circle if Applica						Signature(s	5):	\supset		
MS/MSD	Duplicate ID No.:						1(_			

GROUNDWATER SAMPLE LOG SHEET

Page___ of ___

Project Site Name: Project No.: [] Domestic Well Data [] Monitoring Well Data [] Other Well Type: [] QA Sample Type:	_CNC	Site)	<u>ध</u> V ० । पा		Sample Location: 5 N		ation		
SAMPLING DATA:		_							
Date: 9/8/49	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time: 1210	Visuai	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA	
Method: yesistultic	CIGOL	6.03	5,29	22,0	0	「ルフ			
PURGE DATA:				,				-	mulmin Flow Re
Date: 9-8-99	Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	Flow Ro
Method: peristalfic	Initial	6.01	4.86	22.7	0	1.23		<u> </u>	800
Monitor Reading (ppm): 8	1	6.21	4.75	22.4	0	1.10		1.42 ga	800
Well Casing Diameter & Material	2	80, 3	4.93	22.0	0	1.17		2.84 gal	800
Type: 2" PYC	3	6.03	5.Z1	<i>\$</i> ⊋.o	0	0.78		4.26gal	
Total Well Depth (TD): [3,07]	7	6.05	5,32	93.0	U	1.34		5.18 gal	
Static Water Level (WL): 4,20	5	6.03	5.29	22.0	D	1,27	~	7.10 gal	
One Casing Volume@a/L): ,42									
Start Purge (hrs): 0934									
End Purge (hrs): 1010									
Total Purge Time (min): 3	-								
Total Vol. Purged (gal/L): 7,10									
SAMPLE COLLECTION INFORMA	TION:	-		<u> </u>	<u> </u>				
Analysis		Preser	vative			equirements		Collected	
Andus					ZAPM		ોંં	yes	
WAY TO A NEW TO		<u> </u>			(L	Anber	11	Yes	
	EPINON	þ(<u>u</u>			ome gla	all	45 45	
NESS: Metican		Ι	100		<u> </u>	avac 9		1 4 _c 2	
							_		İ
									[
				<u></u>					
						<u> </u>		<u> </u>	
OBSERVATIONS / NOTES:							<u>.</u>		ł
	43		<u></u>				_		
Volume Time DTI	$\frac{\omega}{\overline{\sigma}}$	ч (99 ¹⁰ 10	03 4.	.55				
_944 11 <	_	5 1	DIO	. 1	ے س				
E 4		ا ر	UIC	ч.	55				
3 0956 4. 5	o								
Circle if Applicable:					Signature(s	<u></u> ジ			
MS/MSD Duplicate ID No.	:				1/	11	/		

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on June 3, 1999 and were logged in under Katahdin Analytical Services work order number WP2729 for a hardcopy due date of July 3, 1999.

KATAHDIN	TTNUS	GEL
Sample No.	Sample Identification	Sample No.
WP2729-1	14SLB020203	9906097-01
WP2729-2	14SLB020203D	9906097-02
WP2729-3	14SLB060405	
WP2729-4	15SLB020405D	9906097-06
WP2729-5	15SLB040405	
WP2729-6	14SLB040304	
WP2729-7	15SLB020405	9906097-05
WP2729-8	14SLB050304	9906097-03
WP2729-9	15SLB010405	9906097-04
WP2729-10	14TL00401	
WP2729-11	29SLB050809	9906097-07

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

One aqueous and nine soil samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on June 3, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-F and 5972-Z instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any sample in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

Two initial calibration curves are reported in this workorder. Both calibrations had several analytes exceeding the maximum allowable 15% RSD. The average %RSD for the 5972-F was 13.4%, and the 5972-Z had an average %RSD of 14.8%.

Sample WP2729-1, 2, 3, 5, 6, 7,8, and 9 required reanalysis due to surrogate or internal standard recovery deviations in the initial analysis to confirm matrix interference, both analyses are included.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Extraction and Analysis

Nine soil/sediment samples were received by Katahdin Analytical Services laboratory on June 3, 1999 for analysis in accordance with 8270C for the PAH list of analytes.

Extraction of the samples occurred following USEPA method 3540 on June 8, 1999. A laboratory control spike consisting of all PAH analytes spiked into organic free sand, was extracted in the batch.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 9.4% and 11.5%, making the curves acceptable.

Initial analysis of sample WP2729-2 yielded internal standard area recovery deviations and target analyte concentrations over the upper limit of the calibration curve. Reanalysis occurred at a 1:5 dilution successfully. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible

analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP2729the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2729 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

Subcontracted Analysis

Analyses for Total Organic Carbon, Total Petroleum Hydrocarbons and Grain size were subcontracted to outside laboratories. All sets of data are included as separate sections to the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Octoral Madeau
Authorized Signature
7:29-99

KATAHDIN ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REP					LAB (WORK O	RDER) #	WP 2729		
Tel. (207) 874-2400	O.(.)				PAGE:		OF	1	
Fax (207) 775-4029					COOLER:		OF	<u> </u>	
CLIENT: Tetra Tech		_			COC# SDG# DATE / TIME R	PECEIVED:	L·3-9	19 0945	
PROJECT: Charleston		_			DELIVERED BY RECEIVED BY LIMS ENTRY E LIMS REVIEW	Y: : BY:	Fed E		
	YES	NO	EXCEPTIONS	COMMI	ENTS		RESOLU	JTION	
1. CUSTODY SEALS PRESENT / INTACT?				-	.				
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?									
3. CHAIN OF CUSTODY SIGNED BY CLIENT?									
4. CHAIN OF CUSTODY MATCHES SAMPLES?									
5. TEMPERATURE BLANKS PRESENT?				TEMP E	BLANK TEMP (°C)=_	3.9			
6. SAMPLES RECEIVED AT 4°C-v/- 2? IÇE)/ ICE PACKS PRESENT () or N?	Ø				ER TEMP (°C)= RD COOLER TEMP (NA ONLY IF TEMP	BLANK IS NO	T PRESENT)	
7. VOLATILES FREE OF HEADSPACE?				-					
8. TRIP BLANK PRESENT IN THIS COOLER									
9. PROPER SAMPLE CONTAINERS AND VOLUME?									
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?									
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?					_			·····	
12. CORRECTIVE ACTION REPORT FILED?			N/A				_		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE	OTHER (STATE C	F ORIGIN):			
LOG - IN NOTES ⁽¹⁾ :	-								
							•		

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if a vired. If samples required pH adjustment, record volume and type of preservative and type.

atahdin Westbrook, ME 04098 Tel: (207) 874-2400

CHAIN of CUSTODY

PLEASE PRINT IN PEN Page _ Fax: (207) 775-4029 (848) 814 9080 (Zip Code 29405 Proj. Name / No. Purchase Order # Katahdin Quote # Address Bill (if different than above) Copies To: Sampler (Print / Sign) ANALYSIS AND CONTAINER TYPE PRESERVATIVES WORK ORDER #: LAB USE ONLY Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. KATAHDIN PROJECT MANAGER REMARKS: FED EX UPS O CLIENT SHIPPING INFO: 809609650243 AIRBILL NO: TFMP°C ☐ TEMP BLANK ☐ INTACT ■ NOT INTACT Date / Time Sample Description Matrix 145LB\$292\$3 6/249/145\$ 145LBØ4Ø3Ø46294 1505 145LB4242030 145LBØ5Ø3WY 15LBØ6\$4\$5 PID! 155LB&10405 155LBØ20405 D 155LB628405D 4 155LBØ4Ø4Ø5 " 2 14TL&646/ 11 COMMENTS Relinquished By: (Signature) Date / Time Received By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Signature) 6/22/14 1800 809609656243 <u>2-3-99 C945</u> aller Will Réfinquished By: (Signature) Date / Time Received By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Signature) DRMSOURCE INC TO (207) 782-3311 DRM # CHN-OF-CSTDY

ORIGINAL

000000

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-2729 Project Manager: Andrea J. Colby ORDER DATE: 06/03/99 REPORT TO: Paul Calligan PHONE: 850/385-98° Tetra Tech NUS FAX: 850/385-98 1401 Oven Park Dr., Suite 102 DUE: 03 JUL FAC.ID: CNC CHARLESTON Tallahassee, FL 32308 INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090 TETRA TECH NUS, INC. PO: N7912-P99264 661 ANDERSEN DRIVE, FOSTER PLAZA VII PITTSBURGH, PA 15220-2745 PROJECT: CTO #68 SAMPLED BY: R. FRANKLIN DELIVERED BY: FEDEX DISPOSE: AFTER 02 AUG ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX 1 WP2729-3 14SLB060405 02 JUN 1540 03 JUN SL WP2729-5 15SLB040405 02 JUN 1245 **DETERMINATION** METHOD OTY PRICE TUUOMA Polynuclear Aromatic Hydrocarbons EPA 8270 135.00 2 270.00 Volatile Organics by 8260B SW8260 2 85.00 170.00 Solids-Total Residue (TS) CLP/CIP SO 2 0.00 0.00 TOTALS 2 220.00 440.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX

2	WP2729-6 14SLB040304	02 JUN	1505	03 JUN	ŞĻ
	DETERMINATION	METHOD	OTY	PRICE	AMOUN 1
	Polynuclear Aromatic Hydrocarbons	EPA 8270	1	135.00	135.00
	Volatile Organics by 8260B	SW8260	1	85.00	85.00
	Solids-Total Residue (TS)	CLP/CIP SO	1	0.00	0.00
	Wet Lab Subcontract		1	110.00	110.00
	TOTALS		1	330.00	330.00

	LOG NUMBER	SAMPLE	DESCRIPTION	SAMPLED DATE	/TIME	RECEIVED	MATRIX
3	WP2729-8	14SLB09	50304	02 JUN	1525	03 JUN	SL
	WP2729-9	15SLB01	10405	02 JUN	1220	•	
	DETERMINATION	NC		METHOD	QTY	PRICE	AMOUNT
	Polynuclear	Aromat	ic Hydrocarbons	EPA 8270	2	135.00	270.00
	Volatile Org	ganics 1	oy 8260B	SW8260	2	85.00	170.00
	Solids-Total	l Resid	ue (TS)	CLP/CIP SC	2	0.00	0.00
	Total Combus	stible (Organics	ASTM D2974	2	30.00	60.00
	Wet Lab Sub	contract	t		2	60.00	120.00

LABORATORY ORDER CONTINUED ON PAGE

TOTALS

620.00

310.00

2

Project Manager: Andrea J. Colby ORDER NO WP-2729

ORDER DATE: 06/03/99 PHONE: 850/385-9899

REPORT TO: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

FAX: 850/385-9860 DUE: 03 JUL

PHONE: 412/921-7090

PO: N7912-P99264

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

TETRA TECH NUS, INC.

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745 PROJECT: CTO #68

SAMPLED BY: R. FRANKLIN DELIVERED BY: FEDEX DISPOSE: AFTER 02 AUG

	LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE	/TIME	RECEIVED	MATRIX
4	WP2729-10 14TL00401	02 JUN	_	03 JUN	SL
	DETERMINATION	METHOD	OTY	PRICE	AMOUNT
	Volatile Organics by 8260B	SW8260	1	85.00	85.00

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
5	WP2729-11	29SLB050809	02 JUN 1055	O3 JUN	SI

DETERMINATION	METHOD	QTY	PRICE	AMOUNT
Wet Lab Subcontract		1	75.00	75.00

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
6	WP2729-1	14SLB020203	02 JUN 1450	03 JUN	SL
	WP2729-2	14SLB020203D	02 JUN 1450		
	WP2729-4	15SLB020405D	02 JUN 1230		

DETERMINATION	METHOD	QTY	PRICE	AMOUNT
Polynuclear Aromatic Hydrocarbons	EPA 8270	3	135.00	405.00
Volatile Organics by 8260B	SW8260	3	85.00	255.00
Solids-Total Residue (TS)	CLP/CIP SO	3	0.00	0.00
Wet Lab Subcontract		3	75.00	225.00
TOTALS	·	3	295.00	885.00

ORDER NO WP-2729

Project Manager: Andrea J. Colby

ORDER DATE: 06/03/99

REPORT TO: Paul Calligan

PHONE: 850/385-98

Tetra Tech NUS

FAX: 850/385-98

1401 Oven Park Dr., Suite 102

DUE: 03 JUL

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745

PROJECT: CTO #68

SAMPLED BY: R. FRANKLIN

DELIVERED BY: FEDEX

DISPOSE: AFTER 02 AUG

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
7	WP2729-7	15SLB020405	02 JUN 1230	03 JUN	SL

DETERMINATION	METHOD	<u>O</u> TY	PRICE	AMOUNT
Polynuclear Aromatic Hydrocarbons	EPA 8270	ī	135.00	135.00
Volatile Organics by 8260B	SW8260	1	85.00	85.00
Solids-Total Residue (TS)	CLP/CIP SO	1	0.00	0.00
Wet Lab Subcontract		1	185.00	185.00
TOTALS		1	405.00	405.00

ORDER NOTE:

QC-IV NFESC-D

DD (KAS007QC-DB3) CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

INVOICE: With Report

TOTAL ORDER AMOUNT \$2,840.0^ This is NOT an Invo.

AJC/BKR/WEST.AJC(dw)

06-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KA I AHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
O-13	Internal standard area(s) are out of criteria. Reanalysis confirmedmatrix interference.
O-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2729-1

Report Date: 07/28/99

Project : CTO #68

PO No.

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 6 of 9

: N7912-P99264 ·

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED D	ATE	RECEIVED
14 <i>S</i> LB020203		Solid		R. FR	ANKLIN	06/02/9	9	06/03/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	78.	wt %	1.0	0.10	CLP/CIP	SOW 06/07/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/04/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF04TSS0

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-1

SDG:

WP2729 7/27/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

78

Method: Date Analyzed: 7/16/99

EPA 8270

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203	SL	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<u></u>	ug/Kg	1.3	430	330		
2-METHYLNAPHTHALENE	<430	ug/Kg	1.3	430	330		
ACENAPHTHYLENE	<430	ug/Kg	1.3	430	330		
ACENAPHTHENE	<430	ug/Kg	1.3	430	330		
FLUORENE	<430	ug/Kg	1.3	430	330		
PHENANTHRENE	<430	ug/Kg	1.3	430	330		
ANTHRACENE	<430	ug/Kg	1.3	430	330		
FLUORANTHENE	<430	ug/Kg	1.3	430	330		
PYRENE	<430	ug/Kg	1.3	430	330		
BENZO[A]ANTHRACENE	<430	ug/Kg	1.3	430	330		
IRYSENE	<430	ug/Kg	1.3	430	330		
dENZO[B]FLUORANTHENE	<430	ug/Kg	1.3	430	330		
BENZO[K]FLUORANTHENE	<430	ug/Kg	1.3	430	330		
BENZO[A]PYRENE	<430	ug/Kg	1.3	430	330		
INDENO[1,2,3-CD]PYRENE	<430	ug/Kg	1.3	430	330		
DIBENZ[A,H]ANTHRACENE	<430	ug/Kg	1.3	430	330		
BENZO(G,H,I)PERYLENE	<430	ug/Kg	1.3	430	330		
NITROBENZENE-D5	48	%	1.3				
2-FLUOROBIPHENYL	61	%	1.3				
TERPHENYL-D14	80	%	1.3				

nort Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-1

SDG:

WP2729

Report Date:

7/6/99

PO No.:

N7912-P99264

Project: % Solids: CTO #68 78

Method:

SW8260

Date Analyzed:

6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203	SL	6/2/99	6/3/99	6/5/99	JSS	5030	JSS
Compound	Res	ult Units	DF	Sample PQL	Method PQL	_	
BENZENE	<7	ug/Kg	1.4	7	5		
TOLUENE	<7	ug/Kg	1.4	7	5		
1,2-DIBROMOETHANE	<7	ug/Kg	1.4	7	5		
ETHYLBENZENE	<7	ug/Kg	1.4	7	5		
NAPHTHALENE	<7	ug/Kg	1.4	7	5		
MTBE	<7	ug/Kg	1.4	7	5		
TOTAL XYLENES	<7	ug/Kg	1.4	7	5		
DIBROMOFLUOROMETHANE	\$68	3 %	1.4				
1,2-DICHLOROETHANE-D4	71	%	1.4				
TOLUENE-D8	\$36	5 %	1.4				
P-BROMOFLUOROBENZENE	\$13	3 %	1.4				

Report Notes:

\$, O-13

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-1RA

SDG: Report Date: WP2729 7/6/99

PO No. :

N7912-P99264

Project:

CTO #68

% Solids:

78

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203	SL	6	6/2/99	6/3/99	6/7/99	KRT	5030	KRT
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<7	ug/Kg	1.4	7	5		
TOLUENE		<7	ug/Kg	1.4	7	5		
1,2-DIBROMOETHANE		<7	ug/Kg	1.4	7	5		
ETHYLBENZENE		<7	ug/Kg	1.4	7	5		
NAPHTHALENE		<7	ug/Kg	1.4	7	5		
MTBE		<7	ug/Kg	1.4	7	5		
TOTAL XYLENES		<7	ug/Kg	1.4	7	5		
DIBROMOFLUOROMETHANE	1	124	%	1.4				
1,2-DICHLOROETHANE-D4	1	125	%	1.4				
OLUENE-D8	1	101	%	1.4				
-BROMOFLUOROBENZENE	;	60	%	1.4				

port Notes:

\$, O-13

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2729-2

Report Date: 07/28/99

PO No.

: N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 7 of 9

SAMPLE DESCRIPTION		MATRIX		SAMPL	ETD BY	SAMPLED I	ATE	RECEIVED
14SLB020203D		Solid		R. FR	ANKLIN	06/02/9	9	06/03/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	86.	wt 8	1.0	0.10	CLP/CIP	SOW 06/07/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/04/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF04TSS0

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Client: Paul Cailigan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-2

SDG:

WP2729

Report Date: PO No. : 7/27/99 N7912-P99264

Project:

CTO #68

% Solids:

86

Method:

EPA 8270

Date Analyzed: 7/15/99

Sample Description	Matrix Sar	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203D	SL	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
				Sample	Method		
Compound	Result	Units	DF	PQL	PQL		
NAPHTHALENE	4200	u g /Kg	1.2	400	330	_	
2-METHYLNAPHTHALENE	1800	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	3000	ug/Kg	1.2	400	330		
FLUORENE	3100	ug/Kg	1.2	400	330		
PHENANTHRENE	E13000	ug/Kg	1.2	400	330		
ANTHRACENE	3800	ug/Kg	1.2	400	330		
FLUORANTHENE	E8500	ug/Kg	1.2	400	330		
PYRENE	E14000	ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	E6400	ug/Kg	1.2	400	330		
HRYSENE	5600	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	E7400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	2500	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	5400	ug/Kg	1.2	400	330		
NDENO[1,2,3-CD]PYRENE	3700	ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	970	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	3800	ug/Kg	1.2	400	330		
NITROBENZENE-D5	52	%	1.2				
2-FLUOROBIPHENYL	63	%	1.2				
TERPHENYL-D14	102	%	1.2				

port Notes:

E, O-13

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-2RA

SDG:

WP2729

Report Date:

7/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

86

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203D	SL	6/2/99	6/3/99	6/7/99	KRT	5030	KRT
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.2	6	5		
TOLUENE	<6	ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.2	6	5		
ETHYLBENZENE	<6	ug/Kg	1.2	6	5		
NAPHTHALENE	<6	ug/Kg	1.2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6		1.2	6	5		
DIBROMOFLUOROMETHANE	132	2 %	1.2				
1,2-DICHLOROETHANE-D4	134	4 %	1.2				
TOLUENE-D8	107	7%	1.2				
P-BROMOFLUOROBENZENE	\$59	9 %	1.2				

Report Notes:

\$, O-13

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-2DL

SDG: Report Date: WP2729 7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

86

Method:

EPA 8270

Date Analyzed: 7/16/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203D	SL	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	5100	ug/Kg	5.8	1900	330		
2-METHYLNAPHTHALENE	2200	ug/Kg	5.8	1900	330		
ACENAPHTHYLENE	<1900	ug/Kg	5.8	1900	330		
ACENAPHTHENE	3700	ug/Kg	5.8	1900	330		
FLUORENE	4000	ug/Kg	5.8	1900	330		
PHENANTHRENE	18000	ug/Kg	5,8	1900	330		
ANTHRACENE	5100	ug/Kg	5.8	1900	330		
FLUORANTHENE	15000	ug/Kg	5.8	1900	330		
PYRENE	12000	ug/Kg	5.8	1900	330		
PENZO[A]ANTHRACENE	7000	ug/Kg	5.8	1900	330		
IRYSENE	6700	ug/Kg	5.8	1900	330		
BENZO[B]FLUORANTHENE	8500	ug/ Kg	5.8	1900	330		
BENZOĮKJFLUORANTHENE	3500	ug/ Kg	5.8	1900	330		
BENZO[A]PYRENE	6200	ug/Kg	5.8	1900	330		
INDENO[1,2,3-CD]PYRENE	3300	ug/Kg	5.8	1900	330		
DIBENZĮA,HJANTHRACENE	<1900	ug/Kg	5.8	1900	330		
BENZO[G,H,I]PERYLENE	4000	ug/Kg	5.8	1900	330		
NITROBENZENE-D5	#8	%	5.8				
2-FLUOROBIPHENYL	#13	%	5.8				
TERPHENYL-D14	#16	%	5.6				

ort Notes:

0-2,#

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-2

SDG:

WP2729 7/6/99

Report Date: PO No. :

N7912-P99264

. . .

CTO #68

Project: % Solids:

86

Method:

SW8260

Date Analyzed: 6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB020203D	SL	6/2/99	6/3/99	6/5/99	JSS	5030	J \$ S
Compound	Res	ult Units	DF	Sample PQŁ	Method PQL		
BENZENE	<6	ug/Kg	1.1	6	5		
TOLUENE	<€	ug/Kg	1.1	6	5		
1,2-DIBROMOETHANE	<€	ug/Kg	1.1	6	5		
ETHYLBENZENE	<€	i ug/Kg	1.1	6	5		
NAPHTHALENE	<€	ug/Kg	1.1	6	5		
MTBE	<€	ug/Kg	1.1	6	5		
TOTAL XYLENES	<€	ug/Kg	1.1	6	5		
DIBROMOFLUOROMETHANE	11	0 %	1.1				
1,2-DICHLOROETHANE-D4	10	5 %	1.1				
TOLUENE-D8	78	3 %	1.1				
P-BROMOFLUOROBENZENE	\$3	9%	1.1				

Report Notes: \$, O-13

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2729-3

Report Date: 07/28/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 9

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED D	SAMPLED DATE RECEIVE		
14SLB060405	·	Solid		R. FR	ANKLIN	06/02/9	9	06/03/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	85.	wt &	1.0	0.10	CLP/CIP	SOW 06/07/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/04/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF04TSS0

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-3

SDG:

WP2729

Report Date:

7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

85

Method:

EPA 8270

Date Analyzed: 7/15/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB060405	SL	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<400	ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	<400	ug/Kg	1.2	400	330		
FLUORENE	<400	ug/Kg	1.2	400	330		
PHENANTHRENE	<400	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/Kg	1.2	400	330		
PYRENE	<400	ug/K g	1.2	400	330		
BENZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO(G,H,I)PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	48	%	1.2				
2-FLUOROBIPHENYL	53	%	1.2				
TERPHENYL-D14	58	%	1.2				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-3

SDG:

WP2729 7/6/99

Report Date:

N7912-P99264

PO No.:

Project:

CTO #68

% Solids:

85

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB060405	SL	6/2/99	6/3/99	6/4/99	KMC	5030	кмс
Compound	Re	sult Units	DF	Sample PQL	Method PQL		
BENZENE	•	:6 ug/Kg	1.1	6	5		
TOLUENE	<	:6 ug/Kg	1.1	6	5		
1,2-DIBROMOETHANE	<	:6 ug/Kg	1.1	6	5		
ETHYLBENZENE	<	≤6 ug/Kg	1.1	6	5		
NAPHTHALENE	<	≈6 ug/Kg	1.1	6	5		
MTBE	•	⊲6 ug/Kg	1.1	6	5		
TOTAL XYLENES	<	:6 цд/Кд	1.1	6	5		
DIBROMOFLUOROMETHANE	\$4	68 %	1.1				
1,2-DICHLOROETHANE-D4	\$(65 %	1.1				
TOLUENE-D8	\$	56 %	1.1				
BROMOFLUOROBENZENE	\$-	49 %	1.1				

port Notes:

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-3RA

SDG:

WP2729 7/6/99

Report Date: PO No. :

Project:

N7912-P99264 CTO #68

% Solids:

85

Method:

SW8260

Date Analyzed: 6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB060405	SL	6/2/99	6/3/99	6/5/99	JSS	5030	JSS
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<(5 ug/Kg	1.1	6	5		
TOLUENE	<(6 ug/Kg	1,1	6	5		
1,2-DIBROMOETHANE	<(s ug/Kg	1.1	6	5		
ETHYLBENZENE	<(s ug/Kg	1.1	6	5		
NAPHTHALENE	<(s ug/Kg	1.1	6	5		
MTBE	<(s ug/Kg	1.1	6	5		
TOTAL XYLENES	<6	ug/Kg	1.1	6	5		
DIBROMOFLUOROMETHANE	\$3	8 %	1.1				
1,2-DICHLOROETHANE-D4	\$3	9 %	1.1				
TOLUENE-D8	\$1	8 %	1.1				
P-BROMOFLUOROBENZENE	\$8	3 %	1.1				

Report Notes:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2729-6 Report Date: 07/28/99

PO No.

: N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 9

SAMPLE DESCRIPTION		MATRIX		SAMPI	ED BY	SAMPLED D	ATE	RECEIVED
14SLB040304		Solid		R. FR	ANKLIN	06/02/9	9	06/03/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	81.	wt %	1.0	0.10	CLP/CIP S	OW 06/07/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/04/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF04TSS0 CC: MS. LEE LECK TETRA TECH NUS

FOSTER PLAZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-6

SDG: Report Date: WP2729 7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

81

Method:

EPA 8270

Date Analyzed:

7/15/99

Sample Description	Matrix Sa	impled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB040304	\$L	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL	,	
NAPHTHALENE	<400	ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	<400	ug/Kg	12	400	330		
FLUORENE	<400	ug/Kg	1.2	400	330		
PHENANTHRENE	<400	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/Kg	1.2	400	330		
PYRENE	<400	ug/Kg	12	400	330		
BENZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	59	%	1.2				
2-FLUOROBIPHENYL	66	%	1.2				
TERPHENYL-D14	65	%	1.2				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-6

SDG:

WP2729

Report Date: PO No.:

7/6/99

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260

Date Analyzed:

6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext, Method	Analyst
14SLB040304	SL	6/2/99	6/3/99	6/5/99	SSL	5030	JSS
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.3	6	5		
TOLUENE	<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.3	6	5		
ETHYLBENZENE	<6	ug/Kg	1.3	6	5		
NAPHTHALENE	<6	ug/Kg	1.3	6	5		
MTBE	<6	ug/Kg	1,3	6	5		
TOTAL XYLENES	<6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	128	B %	1.3				
1,2-DICHLOROETHANE-D4	12	8 %	1.3				
OLUENE-D8	100	0 %	1.3				
BROMOFLUOROBENZENÉ	\$5	7 %	1.3				

ort Notes:

\$

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-6RA

SDG:

WP2729 7/6/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

81

Method:

SW8260

Date Analyzed:

6/7/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB040304	SL	6/2/99	6/3/99	6/7/99	KRT	5030	KRT
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.3	6	5		
TOLUENE	<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.3	6	5		
ETHYLBENZENE	<6	ug/Kg	1,3	6	5		
NAPHTHALENE	<6	ug/Kg	1.3	6	5		
MTBE	<6	ug/Kg	1.3	6	5		
TOTAL XYLENES	<6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	117	%	1.3				
1,2-DICHLOROETHANE-D4	117	%	1.3				
TOLUENE-D8	84	%	1.3				
P-BROMOFLUOROBENZENE	\$41	%	1.3				

Report Notes:

\$, O-13

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2729-8

Report Date: 07/28/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 4 of 9

SAMPLE DESCRIPTION		MATRIX	:	SAMP	LED BY	SAMPLED D	ATE	RECEIVED
14SLB050304		Solid		R. F	RANKLIN	06/02/9	9	06/03/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS) Total Combustible Organics	77. 6.1	wt % wt %	1.0		CLP/CIP SOW ASTM D2974-8	06/08/99 06/08/99	JF JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/07/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF07TSS1

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-8

SDG:

WP2729

Report Date:

7/27/99

PO No.:

N7912-P99264

Project:

CTO #68 77

% Solids: Method:

Date Analyzed: 7/15/99

EPA 8270

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB050304	SL	6/2/99	6/3/99	6/8/99	GST	EPA 3540	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<43	30 ug/Kg	1.3	430	330		
2-METHYLNAPHTHALENE	<43	00 ug/Kg	1.3	430	330		
ACENAPHTHYLENE	<43	30 ug/Kg	1.3	430	330		
ACENAPHTHENE	<43	30 ug/Kg	1.3	430	330		
FLUORENE	<43	30 ug/Kg	1.3	430	330		
PHENANTHRENE	<43	30 ug/Kg	1.3	430	330		
ANTHRACENE	<43	30 ug/Kg	1.3	430	330		
FLUORANTHENE	<43	30 ug/Kg	1.3	430	330		
PYRENE	<43	30 ug/Kg	1.3	430	330		
BENZO[A]ANTHRACENE	<43	30 ug/Kg	1.3	430	330		
CHRYSENE	<4	30 ug/Kg	1.3	430	330		
BENZO[B]FLUORANTHENE	<43	30 ug/Kg	1.3	430	330		
BENZO[KJFLUORANTHENE	<4	30 ug/Kg	1.3	430	330		
BENZO[A]PYRENE	<4		1.3	430	330		
INDENO[1,2,3-CD]PYRENE	<4	30 ug/Kg	1.3	430	330		
DIBENZ[A,H]ANTHRACENE	<4	30 ug/Kg	1,3	430	330		
BENZO[G,H,I]PERYLENE	<4	30 ug/Kg	1.3	430	330		
NITROBENZENE-D5	65	5 %	1.3				

1.3

1.3

Report Notes:

2-FLUOROBIPHENYL

TERPHENYL-D14

69

84

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

WP2729-8

SDG:

WP2729 7/6/99

PO No.:

N7912-P99264

Project:

CTO#68

% Solids:

77

Method:

SW8260

Date Analyzed: 6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB050304	SL	6/2/99	6/3/99	6/5/99	JSS	5030	JSS
Compound	Resu	elt Units	DF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.2	6	5		
TOLUENE	<6	ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.2	6	5		
ETHYLBENZENE	<6	ug/Kg	1.2	6	5		
NAPHTHALENE	<6	ug/Kg	1.2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	133	%	1.2				
1,2-DICHLOROETHANE-D4	125	%	1.2				
TOLUENE-D8	103	%	1.2				
ROMOFLUOROBENZENE	\$58	%	1.2				

ort Notes:

\$, O-13

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-8RA

SDG:

WP2729 7/6/99

Report Date:

N7912-P99264

PO No. : Project:

CTO #68

% Solids:

77

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14SLB050304	SL	6/2/99	6/3/99	6/7/99	KRT	5030	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZEN E	<	6 ug/Kg	1.3	6	5		
TOLUENE	<	6 ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE	<	6 ug/Kg	1.3	6	5		
ETHYLBENZENE	<	6 ug/Kg	1.3	6	5		
NAPHTHALENE	<	6 ug/Kg	1.3	6	5		
MTBE	<	6 ug/Kg	1.3	6	5		
TOTAL XYLENES	<	6 ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	12	24 %	1.3				
1,2-DICHLOROETHANE-D4	12	28 %	1.3				
TOLUENE-D8	8	5 %	1.3				
P-BROMOFLUOROBENZENE	\$5	58 %	1.3				

Report Notes:

\$

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2729-10

SDG:

WP2729

Report Date: PO No.:

7/6/99 N7912-P99264

Project:

CTO #68

% Solids:

Method: Date Analyzed: 6/7/99

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	'd Date Ext. Date		Ext. Method	Analyst
14TL00401	SL 6/2/99		6/3/99	6/7/99	KRT	5030	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/Kg	1.0	5	5		
TOLUENE	<	5 ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/Kg	1,0	5	5		
ETHYLBENZENE	<	5 ug/Kg	1.0	5	5		
NAPHTHALENE	<	5 ug/Kg	1.0	5	5		
MTBE	<	5 ug/Kg	1.0	5	5		
TOTAL XYLENES	<	5 ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	8	8 %	1.0				
1,2-DICHLOROETHANE-D4	8	1 %	1.0				
TOLUENE-D8	8	7 %	1.0				
ROMOFLUOROBENZENE	8	1 %	1.0				

- nort Notes:

Method Blank and Laboratory Control Sample Results

Client:	Tetra Tech NUS	
Work Order:	WP2729	

METHOD BLANK RESULTS

LABORATORY CONTROL SAMPLE RESULTS

	Date	Date		Co	ncentration		Practical		True	Measured	Percent	Acceptance	Acceptance	
	of	of	Units	nits Measured A in Blank		Acceptance	Quantitation	Units	Value	Value	Recovered	Range	Range	
Parameter	Prep	Analysis				Range	Level**					(%)	(mg/kg)	
TS -Total Residue	04-Jun-99	07-Jun-99	wt %	<	0.10 <	0.10	0.10	wt %	90	89.5	99.4	80-120	·	
	07-Jun-99	08-Jun-99	wt %	< 0.10 <		0.10	0.10	wt %			NA			
TCO	07-Jun-99	08-Jun-99	wt %	<	0.10 <	0.10	0.10	wt %				80-120		

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

Duplicate and Matrix Spike/Matrix Spike Duplicate Results

Client:	Tetra Tech NUS	
Work Order:	WP2729	

DUPLICATE RESULTS

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

_									Maria di manarita da mara di di di di di di di di di di di di di										
			_	Samp	le			Acceptance	Concer	tration c	ration or Quantity Matrix Sp				pike Recovery (%)				
			Measurements Mean		Mean		Range	Units Sampl	Spike	Sample	Sample	Sample	Sample	Acceptance	RPD	Acceptance			
	Parameter	Sample No	Units	Rep 1	Rep 2	Conc	RPD	for RPD	Only	Added	+Spike	+Spike	+Spike	+Spike	Range	(%)	Range		
							(%)	(%)			Dup 1	Dup 2	Dup 1	Dup 2	(%)		(%)		
	TS	WP2729-9	wt%	94.2	94.3	94.3	0.1	0-20	MS/MSD Not	Applica	ble for t	nis Parar	neter						
	TCO	WP2729-9	wt%	20.4	20.4	20.4	0.0	0-20	MS/MSD Not	Applica	ble for ti	nis Parar	neter						

RPD = Relative percent difference, which is the absolute value of the difference between two replicate results divided by the mean concentration then multiplied by 100%.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;060899

SDG:

WP2729

Report Date:

7/27/99

PO No.:

Project:

CTO #68

N7912-P99264

% Solids:

100

Method:

EPA 8270

Date Analyzed: 7/6/99

Sample Description	Matrix Sar	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;060899	SL	-	-	6/8/99	GST	EPA 3540	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<330	ид/Кд	1.0	330	330		
2-METHYLNAPHTHALENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHYLENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHENE	<330	ug/Kg	1.0	330	330		
FLUORENE	<330	ug/Kg	1.0	330	330		
PHENANTHRENE	<330	ug/Kg	1.0	330	330		
ANTHRACENE	<330	ug/Kg	1.0	330	330		
FLUORANTHENE	<330	ug/Kg	1.0	330	330		
PYRENE	<330	ug/Kg	1.0	330	330		
BENZOJAJANTHRACENE	<330	ug/Kg	1.0	330	330		
CHRYSENE	<330	ug/Kg	1.0	330	330		
BENZO[B]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[K]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[A]PYRENE	<330	ug/Kg	1.0	330	330		
INDENO[1,2,3-CD]PYRENE	<330	ug/Kg	1.0	330	330		
DIBENZ[A,H]ANTHRACENE	<330	ug/Kg	1.0	330	330		
BENZO[G,H,I]PERYLENE	<330	ug/Kg	1.0	330	330		Ÿ
NITROBENZENE-D5	74	%	1.0				
2-FLUOROBIPHENYL	71	%	1.0				
TERPHENYL-D14	71	%	1.0				

Report Notes:

Lab File: X2090

Sample ID: LCS;060899

Date Run: 7/6/99

Analyst: KRT

Time Injected 1:10:00 PM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	1667	1370	82	60-140
ACENAPHTHENE	1667	1310	78	60-140
ACENAPHTHYLENE	1667	1280	77	60-140
ANTHRACENE	1667	1270	76	60-140
BENZO[A]ANTHRACENE	1667	1130	68	60-140
BENZO[A]PYRENE	1667	1090	65	60-140
BENZO[B]FLUORANTHENE	1667	1130	68	60-140
BENZO[G,H,I]PERYLENE	1667	934	*56	60-140
BENZO[K]FLUORANTHENE	1667	1160	70	60-140
CHRYSENE	1667	1080	65	60-140
DIBENZ[A,H]ANTHRACENE	1667	912	+55	60-140
FLUORANTHENE	1667	1320	80	60-140
FLUORENE	1667	1410	84	60-140
INDENO[1,2,3-CD]PYRENE	1667	1020	61	60-140
NAPHTHALENE	1667	1200	72	60-140
PHENANTHRENE	1667	1300	78	60-140
PYRENE	1667	1140	68	60-140

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ04A

SDG: Report Date: WP2729

PO No.:

7/6/99

O 140. .

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ04A	SL	-	•	6/4/99	КМС	5030	КМС
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/Kg	1.0	5	5		
TOLUENE	⋖	ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE	<	ug/Kg	1.0	5	5		
ETHYLBENZENE	<	ug/Kg	1.0	5	5		
NAPHTHALENE	<	ug/Kg	1.0	5	5		
MTBE	<	ug/Kg	1.0	5	5		
TOTAL XYLENES	<	ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	12	2 %	1.0				
1,2-DICHLOROETHANE-D4	12	4 %	1,0				
TOLUENE-D8	11	3 %	1.0				
P-BROMOFLUOROBENZENE	10	9 %	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Sulte 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ05A

SDG:

WP2729

Report Date: PO No.:

7/6/99

Project:

N7912-P99264

% Solids:

CTO #68

100

Method:

SW8260

Date Analyzed: 6/5/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ05A	SŁ		-	•	6/5/99	JSS	5030	JSS
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE .		<5	ug/Kg	1.0	5	5		
TOLUENE		<5	ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/Kg	1.0	5	5		
ETHYLBENZENE		<5	ug/Kg	1.0	5	5		
NAPHTHALENE		<5	ug/Kg	1.0	5	5		
MTBE		<5	ug/Kg	1.0	5	5		
TOTAL XYLENES		<5	ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	•	117	%	1.0				
1,2-DICHLOROETHANE-D4	•	116	%	1.0				
OLUENE-D8		114	%	1.0				
-BROMOFLUOROBENZENE		107	%	1.0				

port Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF07A

SDG:

WP2729

Report Date:

7/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF07A	AQ	•	-	6/7/99	KRT	5030	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/L	1.0	5	5		
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/L	1.0	5	5		
ETHYLBE NZEN E	<	5 ug/L	1.0	5	5		
NAPHTHALENE	<	5 ug/L	1.0	5	5		
MTBE	<	5 ug/L	1.0	5	5		
TOTAL XYLENES	<	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	8	8 %	1.0				
1,2-DICHLOROETHANE-D4	8	0 %	1.0				
TOLUENE-D8	8	5 %	1.0				
P-BROMOFLUOROBENZENE	7	9 %	1.0				

Report Notes:

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ07A

SDG:

WP2729 7/6/99

Report Date: PO No. :

//0/33 .:**5**0.00

Project:

N7912-P99264

% Solids:

CTO #68 100

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ07A	SL		•	-	6/7/99	KRT	5030	KRT
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/Kg	1.0	5	5		
TOLUENE		<5	ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/Kg	1.0	5	5		
ETHYLBENZENE		<5	ug/Kg	1.0	5	5		
NAPHTHALENE		<5	ug/Kg	1.0	5	5		
MTBE		<5	ug/Kg	1.0	5	5		
TOTAL XYLENES		<5	ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	•	125	%	1.0				
1,2-DICHLOROETHANE-D4	•	130	%	1.0				
TOLUENE-D8	1	105	%	1.0				
3ROMOFLUOROBENZENE		99	%	1.0				

vort Notes:

Lab File: Z0972

Sample ID: LCSZ04A

Date Run: 6/4/99

Analyst: KMC

Time Injected 9:27:00 AM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	58.3	116	60-140
BENZENE	50	54.8	110	60-140
ETHYLBENZENE	50	65.9	132	60-140
MTBE	50	56.5	113	60-140
NAPHTHALENE	50	50.5	101	60-140
TOLUENE	50	59.1	118	60-140
TOTAL XYLENES	150	202	135	60-140

Lab File: Z0988

Sample ID: LCSZ05A

Date Run: 6/5/99

Analyst: JSS

Time Injected 11:30:00 AM

Matrix: SL

Compound Name	Spike Amt (ng/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.9	100	60-140
BENZENE	50	48.3	97	60-140
ETHYLBENZENE	50	55,2	110	60-140
MTBE	50	52.5	105	60-140
NAPHTHALENE	50	45,8	92	60-140
TOLUENE	50	49.2	98	60-140
TOTAL XYLENES	150	165	110	60-140

Lab File: F0796

Sample ID: LCSF07A

Date Run: 6/7/99

Analyst: KRT

Time Injected 10:00:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	46.3	92	60-140
BENZENE	50	47.2	94	60-140
ETHYLBENZENE	50	47.9	96	60-140
MTBE	50	45.7	91	60-140
NAPHTHALENE	50	46.8	94	60-140
TOLUENE	50	47.1	94	60-140
TOTAL XYLENES	150	141	94	60-140

Lab File: Z1004

Sample ID: LCSZ07A

Date Run: 6/7/99

Analyst: KRT

Time Injected 9:18:00 AM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.5	99	60-140
BENZENE	50	48.2	96	60-140
ETHYLBENZENE	50	56.5	113	60-140
MTBE	50	44.9	90	60-140
NAPHTHALENE	50	35.6	71	60-140
TOLUENE	50	51.3	102	60-140
TOTAL XYLENES	150	172	114	60-140

Case Narrative for KATA SDG# 96058S

TOTAL PETROLEUM HYDROCARBONS

Analytical Batch Number: 151686

Analytical Method: SW846 9071A

Laboratory Number	Sample Description	
9906097-01	14SLB020203	
9906097-02	14SLB020203D	
9906097-05	15SLB020405	
9906097-06	15SLB020405D	
9906097-07	29SLB050809	
QC621595	Blank	
QC621596	Laboratory Control Sample	
QC621597	Matrix Spike of 9906097-01	
QC621598	Duplicate of 9906097-01	
QC621599	Matrix Spike of 9906242-01	
QC621600	Duplicate of 9906242-01	

Instrument Calibration:

The instrument was properly calibrated.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The matrix spikes were run on the following Sample Numbers.

9906097-01 and 9906242-01

All analyte recoveries in the matrix spikes were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

TOTAL ORGANIC CARBON

Analytical Batch Number: 150724

Analytical Method: SW846 9060 Modified

Laboratory Number	Sample Description	
9906058-01	29SLB060809	
9906097-03	14SLB050304	
9906097-04	15SLB010405	
QC617934	Blank	
QC617935	Duplicate of 9906058-01	
QC617936	Post Spike of 9906058-01	
QC617937	Laboratory Control Sample	

Sample Preparation:

All samples were prepared in accordance with accepted procedures. The method quoted is only for liquid samples. It is modified to handle soils analysis.

Instrument Calibration:

The instrument used was a Dohrmann DC-190 high temperature combustion TOC analyzer with a Dohrmann solids boat sampler. The instrument was properly calibrated on the day of the analysis.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The post spike was run on the following Sample Number.

9906058-01

All analyte recoveries in the post spike were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

Additional Comments:

TOC solid samples are are tested to determine if inorganic carbon such as carbonates and bicarbonates are present in the sample. If so, the sample is acidified to remove the inorganic carbon, then dried in a low temperature oven. Because the sample portion is dried before analysis, the percent moisture correction is not applied to the TOC solid result.

The preceding narratives have been reviewed by: Date: 06/27/19

General Engineering Laboratories, Inc. 2040 Savage Road
Charleston, South Carolina 29407
P.O. Box 30712
Charleston, South Carolina 29417
(803) 556-8171

		•	
Page	l of l		

White

.mple collector

Yeilow = file

Pink = with report

CHAIN OF CUSTODY RECORD

_	-8										7 <u>()</u>	<u> </u>	<u> </u>	<u>> & </u>	<u> </u>	rks area								(005)	330-0171	
C	Client Name/Facility Na					100		SAM	PLE /	NAL'	YSIS I	REQU	RED	(X) - us	e remai	rks area	to spec	ify spec	ific con	pound	s or mel	thods	11	_ U	se F or P in the boxes to indicate whether sample was filtered and/or preserved	er
L	Kutaha	19				ER	<u></u>			*	_	\	<u>₹</u>		_	Т	8	"			Ž.		1	_	sample was intered and/or preserved	
C	Collected by/Company Tetra T	1.	/			15	1 to 1			ž	뒬	¥3	100			=	4	粪			- specify					
L	Tetrail	ecns	705		1	Ĭ	ğ	Š		4		S 5	3	2	충	ğ		Į.		.u	Ē					
	SAMPLE ID	DATE	TIME	WELL	COMP	# OF CONTAINERS	pH, conductivity	TOC/DOC	тох	Chloride, Fluoride, Sulfide	Nitrite/Nitrate	VOC - Specify Method required	METALS - specify	Pesticide	Kerbicide	Total Phenol	Acid Extractables	B/N Extractables	PCB's	Cyanide	СоШоти type				Remarks	
Þ.	29 <i>5LB</i> Ø6Ø8Ø 29 <i>SLB</i> Ø6 <i>Ø</i> 8Ø	9 6/1	1524					1																	_	
, <u>)</u> .	295LB Ø6 48K	195 6/1	1520					i																		
3 / ∶	29 <i>SLB</i> Ø6Ø89	59M 6/1	1524					1																		
_																										
												7														
					\prod							-													-	
	-			\prod														·							·	
r					\prod																					
				$\ \cdot\ $																						
					\prod												-									
				\parallel																						
r				\parallel	$ \uparrow $																					
Re	dinguished by:	14 ~	Date: 6199	Time 17.	5 <i>y</i>	Rece	ived by	y:						Relin	quishe	ed by:						Date	:	Time:	Received by:	
Rě	linguished by:		Date:	Time		Rece	lyed by	y lab b	<u>y:</u> _>	لمعرد			- 1	Date:	/	Time	- 1	Rema	rks:		. '					

CHAIN OF CUSTODY RECORD

White = sample collector

General Engineering Labantories, Inc. 2040 Savage Road Charleston, South Carol..... 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

9

	Page of	_													٥	101	06	٥	77	-/.					(803)	556-8171	
ſ	Client Name/Facility Na	me 1	. 1 .	1			s		SAM	(PLE	ANAL	YSIS	REQU	IRED	(x) - us	e remar	ks area	to spec	ify spec	ific com	pound	s or me	thods	П		e F or P in the boxes to indicate wh sample was filtered and/or preserve	
Ļ	Katana	11 A	naly	1	(0	색	NER	ž			₹		2	¥				ş	8			<u>\$</u>			1		
[Collected by/Company	tecl	بر ٧٠	ر	\$		CONTAI	oductivit	тослос		Chloride, Fluoride, Sulfide	Nitrite/Nitrate	VOC - Specify Method required	METALS - specify	ä	ş	Total Phenol	Acid Extractables	B/N Extractables		2	Coliform - specify type	1				
	SAMPLE ID	DATE	TIME	WELL	SOIL	GRAB	# OF	pH, co	5	δī	Chlori	Nitrite	Wethor	META	Pestici	Herbk	Total	Acid E	BAN E	PCB's	Cyamk	2 Ser	404			Remarks	
۱۶	145LBØ24343	6240	1456				1									ļ							١	1			
را2،	YSLBW 2 \$2 \$30	624	145\$	Ц		Ц	1																1				
3	145LB\$543p4	, "	1525				1		1																		
۱۲۰۰	145LBØ543ø4 165LBØ1 Ø4Ø4 155LBØZ44ø4	- 11	1220				١		1																		
15	155LBØZ444.	5 11	1236				l													l <u></u>			1				
	SSL13ØZØ4ØS		1234				1																1				
	29 SL B\$5 \$84		1455				ſ																1		_		
									_																		
							•																				
																											_
	elinquished by:	~	Date: . 6299	<u> </u>		' I	١	lved b							Relin	quish	ed by:						Date	t:	Time:	Received by:	
·R	elinquished by:		Date:	Tir	ne:	(Recei	íved b	y lab.)	by:	<u>, </u>				Date		Time	-	Rem	arks:							

Pink = with report

Yellow = file

FEDERAL SAMPLE RE	CE	TP	T REVIEW
Client KATA Received by A			Date 6/2/99
GEL COOLER GEL POLY COOLER CLIEN	тс	001	
SAMPLE REVIEW CRITERIA	YES	NO	COMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	1		
Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)?	レ		_
Were the survey results negative?	١.,	-	
If no, notify Project Manager	10		
Arc any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	<u> </u>	V	
3. Were chain of custody documents included?			
Were chain of custody documents completed correctly? (Ink, signed, match containers)		_	
5. Were all sample containers properly labeled?	V		
6. Were proper sample containers received?	ارا	•	
7. Preserved samples checked for pH?		_	
8. Were samples preserved correctly? If no, list samples & tests	V		
9. Shipping container temperature checked?	1		
10. Was shipping conatiner temperature within specifications (4°± 2° C) If no, notify Project Manager	V		40
11. Is temperature documented on the Chain of Custody?	-	-	
12. Were samples received within holding time? if No, notify Project Manger	V		
13. Were VOA vials free of headspace?	-	_	
14. ARCOC# IF REQUIRED	-	ļ	-
15. SDG# IF REQUIRED	V		
REVIEW HAUC'L DATE 6/11/99 SA-SE	ALS	Αľ	TACHED NSA - NO SEALS ATTACHED

FEDERAL SAMPLE RE	CEIPT REVIEW
Client KATA Received by CG	Date 6/2/99
GEL COOLER GEL POLY COOLER CLIEN	T COOLERV OTHER
SAMPLE REVIEW CRITERIA	YES NO COMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	
Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)?	
Were the survey results negative? If no. notify Project Manager	
Are any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	
3. Were chain of custody documents included?	
Were chain of custody documents completed correctly? (Ink, signed, match containers)	
5. Were all sample containers properly labeled?	
6. Were proper sample containers received?	
7. Preserved samples checked for pH?	
Were samples preserved correctly? If no, list samples & tests	+ Soi2
9. Shipping container temperature checked?	
 Was shipping conatiner temperature within specifications (4°±2° C) If no, notify Project Manager 	- 4°C
11. Is temperature documented on the Chain of Custody?	
12. Were samples received within holding time? if No. notify Project Manger	
13. Were VOA vials free of headspace?	-
14. ARCOC# IF REQUIRED	
15. SDG# IF REQUIRED	7 96097
REVIEW HAULED DATE 6/2/99 SA-SE	EALS ATTACHED NSA - NO SEALS ATTACHED

Gray Plaza, P. O Box 378, Gray, ME 04039 TEL (207) 657-2866 FAX (207) 657-2840

Six Liberty Drive, Bangor, ME 04401 TEL (207) 848-5714 FAX (207) 848-791 Water St., P. O. Box 220, Caribou, ME 04736 TEL (207) 496-1511 FAX (207) 496-331 Londonderry Rd., #6, Londonderry, NH 03053 TEL (603) 437-9600 FAX (603) 437-9656

Roger E. Domingo

Letter Of Transmittal

Attn: Kelly Perkins Project No: 99-008 P.O. Box 720 Subject No: 99-008	
D.O. Boy 720	
Subject: Misc. Testing '99	
Westbrook, ME 04098	
Manage of the second Control of the second o	
We are sending you: Attached Under separate cover	
☐Investigation Report ☐ Prints ☐ Samples	
Laboratory Test Report(s) Copy of Letter(s) Invoice	
☐Field Test Report(s) ☐Specifications ☐Other	
Description: Report of Gradation S # 19-20	
Hydrometer Analysis S # 19-20	
These are transmitted as checked below:	
⊠For your information ⊠For your use	
Remarks:	
Copy to: S. W. COLE ENGINEERING, INC.	
BV. Re (F)	

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID

Lab ID

: 14SLB020203 : 9906097-01

Matrix

; Soil

Date Collected

: 06/02/99

Date Received

: 06/02/99

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
General Chemistry Total Rec. Petro. Hy Evaporative Loss @		785 24.0	66.0 1.00	132 1.00	mg/kg wt%	_	AAT GJ	06/22/99 06/03/99		

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date. June 22, 1999

Page 1 of 1

Sample ID Lab ID

: 14SLB020203D : 9906097-02

Matrix Date Collected : Soil

Date Received Priority

: 06/02/99 : 06/02/99

Collector

: Routine

: Client

Parameter Qualifier	Result		DL	RL	Units	DF	Analy	st Date	Time	Batch 1	M
General Chemistry		_							_		
Total Rec. Petro. Hydrocarbons	321		59.5	119	mg/kg	0.1	AAT	06/22/99	0950	151686	1
Evaporative Loss @ 105 C	16.0		1.00	1.00	w1%	1.0	GJ	06/03/99	1500	150650	2

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page loft

Sample ID Lab ID : 14SLB050304 : 9906097-03 : Soil

Matrix
Date Collected
Date Received

: 06/02/99 : 06/02/99 : Routine

Priority Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Ana	lyst Date	Time	Batch M	-
General Chemistr	y										
Evaporative Loss	@ 105 C	13.0	1.00	1.00	wt%	1.0	ĢJ	06/03/99	1500	150650 I	
Total Organic Carl	bon	11900	43.1	100	mg/kg	1.0	LS	06/18/99	1836	150724 2	

M = Method	Method-Description	
M 1	EPA 3550	_
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit,

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Just 91 W

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

***9906097**_03×

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

QC Summary Report

Project Description:

Former Naval Complex

cc: KATA00199

Lab. Sample ID: 9906097%

Report Date: June 22, 1999

Page 1 of I

Sample/Parameter	Type	Batch	NOM	Sample	Qual QC	Units	RPD%	REC%	Range	Analyst	Date	Time
General Chemistry					_							
QC621595 B	LANK	151686										
Total Rec. Petro. Hydroc.	arbons				0.00	mg/kg				AAT	06/22/99	0950
QC621598 9906097-0	UDUP	151686										
Total Rec. Petro. Hydroc	arbons			783	1 02 0	mg/kg	26.3					
QC621600 9906242-0	OLDUP	151686										
Total Rec. Petro. Hydroc.	arbons			1560	19 10	mg/kg	20.0					
QC621596	LCS	15168 6										
Total Rec. Petro. Hydroc	arbons		11000		9840	mg/kg		89.6	(70.0 -	116.)		
QC621597 9906097	-01MS	151686										
Total Rec. Petro. Hydroc.	arbons		13200	783	12600	mg/kg		90.0	(70.0 -	130.)		
QC621599 9906242	-01MS	151686										
Total Rec. Petro. Hydroc	arbons		12100	1560	13000	mg/kg		94.6	(70.0 -	130.)		
QC617634 B	LANK	150650										
Evaporative Loss @ 105	С				0.00	wt%				GJ	06/03/99	9 1500
QC617632 9906058-0	OIDUP	150650										
Evaporative Loss @ 105	C			8.00	8.00	wt%	0.00					
QC617934 B	LANK	150724										
Total Organic Carbon					-2.83	mg/kg				LS	06/18/99	9 1628
QC617935 9906058-0	01DUP	150724										
Total Organic Carbon				6780	6830	mg/kg	0.764			LS	06/18/99	9 1740
QC617937	LCS	150724										
Total Organic Carbon			3750		4420	mg/kg		118	(88.0 -	130.) LS	06/18/9	9 1613
QC617936 990605	8-01PS	150724				, ,						
Total Organic Carbon			10000	6780	16200	mg/kg		94.2	. (73.0 -	129.) LS	06/18/9	9 174

Notes:

The qualifiers in this report are defined as follows:

J indicates presence of analyte < RL (Report Limit)

U indicates presence of analyte < DL (Detect Limit)

n/a indicates that spike recovery limits do not apply when sample concentration exceeds spike conc by a factor of 4 or more

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No. 99008 Date 99008

Project MISCELLANEOUS

Client KATAHDIN ANALYTICAL

Sample No. 19, SANDY GRAVEL, WP2729-6

		PROJECT
<u>Sieve Size</u>	<u>Percent Passing</u>	Specifications %
3/4 "	100.0	
1/2 "	96.9	
1/4 "	91.1	
# 4	88.6	
# 10	77.6	
# 20	62.7	
# 40	51.8	
# 60	44.0	
# 100	27.7	
# 200	10.4	

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No. 99008

Date

06/07/1999

Project MISCELLANEOUS

Client KATAHDIN ANALYTICAL

Sample No. 20, SAND, WP2729-7

Sieve Size	Percent Passing	PROJECT Specifications %
1/2 " 1/4 "	100.0 99.7	
# 4	99.5	
# 10 # 20	98.3 95.8	
# 40	90.4	
# 60 # 100	78.0 29.8	
# 200	6.8	

HYDROMETER ANALYSIS

JOB NO.99-008 BORING NO. SAMPLE NO.S-19

DIAMETER	% PASSING	READING
3.652952E-02	10.13329	2.2
2.587339E-02	9.479344	2
1.831047E-02	9.152371	1.9
1.339429E-02	8.49881	1.7
9.471192E-03	8.49881	1.7
.0067193	7.190912	1.3
4.762978E-03	6.210377	1
3.387185E-03	3.921943	.3
2.398976 E -03	3.267994	.1
1.380011E-03	4.739186	.55

HYDROMETER ANALYSIS

JOB NO.99008 BORING NO. SAMPLE NO.S-20

DIAMETER	% PASSING	READING
3.748418E-02	5.39373	2
2.654942E-02	4.944107	1.8
1.881995E-02	4.269942	1.5
1.374415E-02	4.269942	1.5
9.750622E-03	3.370696	1.1
6.92858E-03	2.022096	.5
4.919103E-03	8983074	0

August 17, 1999

Mr. Paul Calligan Tetra Tech NUS 1401 Oven Park Drive, Suite 102 Tallahassee, FL 32308

RE: Katahdin Lab Number: WP-3254

Project ID: CTO #68

Project Manager: Ms. Andrea J. Colby

Sample Receipt Date: July 14, 1999

Dear Mr. Calligan:

Please find enclosed the following information:

- Report of Analysis
- * Quality Control Data Summary
- Confirmation
- Chain of Custody

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Hana Crouch
Authorized Signature

Date

TECHNICAL NARRATIVE

Volatile Organics Analysis

Four aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on July 14, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-S instrument. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any sample in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 14.0%, making the curve acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Extraction and Analysis

Three aqueous samples were received by Katahdin Analytical Services laboratory on July 14, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the samples occurred following USEPA method 3510 on July 15, 1999. A laboratory control spike consisting of all PAH analytes spiked into organic free water, was extracted in the batch, along with a site specific MS/MSD pair on sample WP3254-2.

The initial calibration curve analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 10.1%, making the curve acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

KATAHDIN ANALYTICAL SERVIC SAMPLE RECEIPT CONDITION RE	-			LAB (WORK ORDER) # WP 3254
Tel. (207) 874-2400 Fax (207) 775-4029				PAGE: OF
				COOLER:OF
CLIENT: Tetra Tech				COC#SDG#
CLIENT. 107RA 160				DATE / TIME RECEIVED: 7-14-99 0930
				DELIVERED BY: FedEx
Cl l l				RECEIVED BY: San
PROJECT: harleston				LIMS ENTRY BY:AC
				LIMS REVIEW BY / PM:
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	□			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER	87 🗹 j			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	I			
4. CHAIN OF CUSTODY MATCHES SAMPLES?	\square			
5. TEMPERATURE BLANKS PRESENT?	⊿			TEMP BLANK TEMP (°C)= 3.5
6. SAMPLES RECEIVED AT 4°C+4-2? (CE) ICE PACKS PRESENT (Y) or N?	a			COOLER TEMP (°C)= <u>NA</u> (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	V			
8. TRIP BLANK PRESENT IN THIS COOLER	U			
9. PROPER SAMPLE CONTAINERS AND VOLUME	, 🗵			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT	7 प			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?			a	
12. CORRECTIVE ACTION REPORT FILED?		ⅎ	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) CO	MMERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check uired. If samples required pH adjustment, record volume and type of preservative 'ed.

Katahdin RALANICAL STRVICES TE

340 County Road No 3 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 For: (207) 775-4020

CHAIN of CUSTODY

PLEASE PRINT IN PEN Phone # (843)814-9080 Katahdin Quote # Proj. Name / No. Purchase Order # Bill (if different than above) Address Copies To: Emily Harrison Sampler (Print / Sign) ANALYSIS AND CONTAINER TYPE WORK ÖRDER #: LAB USE ONLY PRESERVATIVES Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. KATAHDIN PROJECT MANAGER REMARKS: **Z** FED EX □ UPS SHIPPING INFO: ☐ CLIENT AIRBILL NO._ ■ NOT INTACT ☐ TEMP BLANK ☐ INTACT TEMP°C_ Date / Time No. of Cntrs. Sample Description Matrix coll'd 14-6LM010 156LM0101 316LM0101 24TL00201 COMMENTS ııshed By: (Signature) Received By: (Signature) Received By: (Signature) Date / Time Relinquished By: (Signature) Date / Time 199 1800 B13402904624 <u>7-14-99 093</u>0 Date / Time inquished By: (Signature) Received By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Signature)

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-3254 Project Manager: Andrea J. Colby

ORDER DATE: 07/14/99

REPORT TO: Paul Calligan
PHONE: 850/385-98
Tetra Tech NUS
FAX: 850/385-98

Tetra Tech NUS FAX: 850/385-98.
1401 Oven Park Dr., Suite 102 DUE: 13 AUG

Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC. PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO #68

SAMPLED BY: CLIENT DELIVERED BY: FEDEX DISPOSE: AFTER 12 SEP

 ITEM
 LOG
 NUMBER
 SAMPLE
 DESCRIPTION
 SAMPLED
 DATE/TIME
 RECEIVED
 MATRIX

 1
 WP3254-1
 14GLM0101
 13 JUL 1255
 14 JUL AQ

 WP3254-2
 15GLM0101
 13 JUL 1050

 WP3254-3
 34GLM0101
 13 JUL 0858

DETERMINATION METHOD PRICE AMOUNT Volatile Organics by 8260B 3 SW8260 75.00 225.00 Polynuclear Aromatic Hydrocarbons EPA 8270 3 125.00 375.00 TOTALS 3 200.00 600.00

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX
2 WP3254-4 34TL00201 13 JUL 14 JUL

DETERMINATION METHOD OTY PRICE AMOUNT
Volatile Organics by 8260B SW8260 1 75.00 75.00

ORDER NOTE: QC-IV NFESC

DD (KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

FINAL PAGE

TOTAL ORDER AMOUNT \$675.

This is NOT an Invol

AJC/WEST.AJC(dw)

INVOICE: With Report

07-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text		
		<u> </u>	

'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3254-1

SDG:

WP3254

Report Date:

8/11/99

PO No.:

N7912-P99264 CTO #68

Project:

...

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/2/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0101	AQ	7/13/99	7/14/99	7/15/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZĮA,HJANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	65	%	1.0				
2-FLUOROBIPHENYL	65	%	1.0				
TERPHENYL-D14	70	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

P-BROMOFLUOROBENZENE

98

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3254-1

SDG:

WP3254

Report Date:

8/11/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

Date Analyzed: 7/19/99

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0101	AQ	7/13/99	7/14/99	7/19/99	KMC	5030	KMC
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
BENZENE		ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	< 5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	115	5 % h	1.0				
1,2-DICHLOROETHANE-D4	113	3 %	1.0				
OLUENE-D8	110) %	1.0				

1.0

.eport Notes:

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;071599

Lab Name:

Katahdin Analytical Services

SDG No.: WP3254

Lab File ID:

Z1577

Lab Sample ID: SBLK;071599

Instrument ID:

5972-Z

Date Extracted: 7/15/99

GC Column: RTX-624 ID: 0.18

Date Analyzed: 07/30/99

Matrix: (soil/water) WATER

(mm)

Time Analyzed: 15:18

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;071599	LCS;071599	Z1592	8/2/99	11:15:00 AM
14GLM0101	WP3254-1	Z1597	8/2/99	3:18:00 PM
15GLM0101	WP3254-2	Z1598	8/2/99	4:06:00 PM
34GLM0101	WP3254-3	Z1599	8/2/99	4:53:00 PM
15GLM0101MS	WP3254-2MS	Z1609	8/3/99	12:13:00 PM
15GLM0101MSD	WP3254-2MSD	Z1610	8/3/99	1:00:00 PM

Glient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;071599

SDG:

WP3254

Report Date:

8/11/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 7/30/99

Sample Description	Matrix Sampled Dat		Date Rec'd Date Ext. Date		Ext'd By	Ext. Method	Analyst
SBLK;071599	AQ	-	-	7/15/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		_
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
TYRENE	<10	ug/L	1.0	10	10		
.NZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	62	%	1.0				
2-FLUOROBIPHENYL	64	%	1.0				
TERPHENYL-D14	74	%	1.0				

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: Z1592

Sample ID: LCS;071599

Date Run: 8/2/99

Analyst: KRT

Time Injected 11:15:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	23.2	*46	70-130
ACENAPHTHENE	50	28.9	•58	70-130
ACENAPHTHYLENE	50	27.9	*56	70-130
ANTHRACENE	50	41.4	83	70-130
BENZO[A]ANTHRACENE	50	37.5	75	70-130
BENZO[A]PYRENE	50	35.9	72	70-130
BENZO[B]FLUORANTHENE	50	35.3	70	70-130
BENZO[G,H,I]PERYLENE	50	35.0	70	70-130
BENZO[K]FLUORANTHENE	50	38.1	76	70-130
CHRYSENE	50	39.6	79	70-130
DIBENZ[A,H]ANTHRACENE	50	35.1	70	70-130
FLUORANTHENE	50	43.5	87	70-130
FLUORENE	50	33.5	*67	70-130
INDENO[1,2,3-CD]PYRENE	50	37.3	75	70-130
NAPHTHALENE	50	19.7	•39	70-130
PHENANTHRENE	50	38.3	77	70-130
PYRENE	50	33.8	•68	70-130

Katahdin Analytical Services MS/MSD Report

sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3254-2	Z1598	8/2/99	4:06:00 PM	KRT	AQ	827 0_99
WP3254-2MS	Z1609	8/3/99	12:13:00 PM	KRT	AQ	827 0_99
WP3254-2MSD	Z1610	8/3/99	1:00:00 PM	KRT	AQ	82 7 0_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	50	50	76.7	78.3	•153	*156	60-140	2.1	30
ACENAPHTHENE	0	50	50	71.0	67.2	*142	134	60-140	5.5	30
ACENAPHTHYLENE	0	50	50	67.5	64.1	135	128	60-140	5.2	30
ANTHRACENE	0	50	50	79.9	83.0	*160	*166	60-140	3.8	30
BENZO[A]ANTHRACENE	0	50	50	71.3	74.1	•143	*148	60-140	3.8	30
BENZO[A]PYRENE	0	50	50	69.6	69.9	139	140	60-140	0.43	30
BENZO[B]FLUORANTHENE	0	50	50	65,0	67.0	130	134	60-140	3.0	30
2-METHYLNAPHTHALENE	0	50	50	68.4	57.6	137	115	60-140	17	30
BENZO[K]FLUORANTHENE	0	50	50	83.3	78.5	•167	•157	60-140	5.9	30
PYRENE	0	50	50	71.8	79.4	•144	*159	60-140	10	30
DIBENZ[A,H]ANTHRACENE	0	50	50	60.0	66.6	120	133	60-140	10	30
FLUORANTHENE	0	50	50	78.6	77.4	*157	*155	60-140	1.5	30
FLUORENE	0	50	50	69.6	69.7	139	139	60-140	0.14	30
INDENO[1,2,3-CD]PYRENE	0	50	50	60.1	69.5	120	139	60-140	14	30
'THALENE	0	50	50	67.9	56.7	136	113	60-140	18	30
ANTHRENE	0	50	50	77.i	79.4	•154	•159	60-140	2.9	30
BENZO[G,H,I]PERYLENE	0	50	50	67.6	79.0	135	•158	60-140	16	30

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKS19A

Lab Name: Katahdin Analytical Services

SDG No.: WP3254

Lab File ID:

S5474

Lab Sample ID: VBLKS19A

Date Analyzed: 07/19/99

Time Analyzed: 10:09

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-S

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSS19A	LCSS19A	S5473	7/19/99	9:09:00 AM
14GLM0101	WP3254-1	S5475	7/19/99	11:03:00 AM
15GLM0101	WP3254-2	S5476	7/19/99	11:45:00 AM
34GLM0101	WP3254-3	S5477	7/19/99	12:27:00 PM
34TL00201	WP3254-4	S5478	7/19/99	1:10:00 PM

^lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKS19A

SDG:

WP3254

Report Date:

8/11/99

PO No.:

N7912-P99264

Project:

CTO #68 N/A

% Solids:

Method:

SW8260

Date Analyzed: 7/19/99

Sample Description	Matrix	Sampled	Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKS19A	AQ -		-	7/19/99	КМС	5030	KMC	
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5 uç	g/L	1.0	5	5		
TOLUENE	•	-5 ս զ	g/L	1.0	5	5		
1,2-DIBROMOETHANE	•	ւ 5 սլ	g/L	1.0	5	5		
ETHYLBENZENE	•	<5 ug	g/L	1.0	5	5		
NAPHTHALENE	•	<5 uç	g/L	1.0	5	5		
MTBE	•	<5 ug	g/L	1.0	5	5		
TOTAL XYLENES	•	c5 uջ	g/L	1.0	5	5		
DIBROMOFLUOROMETHANE	1	10	%	1.0				
1,2-DICHLOROETHANE-D4	1	06	%	1.0				
DLUENE-D8	1	02	%	1.0				
P-BROMOFLUOROBENZENE	9	97	%	1.0				

..<eport Notes:</pre>

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: S5473

Sample ID: LCSS19A

Date Run: 7/19/99

Analyst: KMC

Time Injected 9:09:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	53.2	106	60-140
BENZENE	50	53.1	106	60-140
ETHYLBENZENE	50	61.1	122	60-140
MTBE	50	53.2	106	60-140
NAPHTHALENE	50	56.3	112	60-140
TOLUENE	50	54.4	109	60-140
TOTAL XYLENES	150	189	126	60-140

October 12, 1999

Paul Calligan Tetra Tech NUS 1401 Oven Park Dr., Suite 102 Tallahassee, FL 32308

RE: Katahdin Lab Number: WP-3877

Project ID: CTO #68

Project Manager: Ms. Andrea J. Colby Sample Receipt Date: September 10, 1999

Dear Mr. Calligan:

Please find enclosed the following information:

- * Report of Analysis
- * Quality Control Data
- * Confirmation
- Chain of Custody

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Authorized Signature

Date

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on September 10, 1999 and were logged in under Katahdin Analytical Services work order number WP3877 for a hardcopy due date of October 10, 1999. The methane samples were canceled by Paul Calligan when it was discovered that FEDEX has misdelivered the cooler and the samples were out of hold time by the time they were received by the subcontract lab.

KATAHDIN	TTNUS
<u>Sample No.</u>	Sample Identification
WP3877-1	34 GLM 0101
WP3877-2	34GLM0201
WP3877-3	34GLM0301
WP3877-4	34GLM0201D
WP3877-5	14GLM0301D
WP3877-6	34TL00201
WP3877-7	14TL00201
WP3877-8	18TL00101
WP3877-9	23TL00101
WP3877-10	14GLM0101
WP3877-11	14GLM0201
WP3877-12	14GLM0301
WP3877-13	19GLO1B01
WP3877-14	19GLM0301
WP3877-15	19GLM0601
WP3877-16	19GLO1D01
WP3877-17	19GLO1C01
WP3877-18	18GLO1F01
WP3877-19	18GLM03D01
WP3877-20	18GLM0201
WP3877-21	18GLM0201D
WP3877-22	18GLO1E01
WP3877-23	18GLM0101
WP3877-24	23GLM0201
WP3877-25	23GLX0201
WP3877-26	23GLM0301

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Twenty-four aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on September 10, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-F instrument. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ppb.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. A matrix spike/matrix spike duplicate analysis was performed on sample WP3877-20.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Twenty aqueous samples were received by Katahdin Analytical Services laboratory on September 10, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of samples WP3877 2-5, -11-19 occurred following USEPA method 3510 on September 13, 1999. A laboratory control spike/laboratory control spike duplicate pair was extracted in the batch. The remainder of the samples. WP3877 20-26 were extracted following USEPA method 3510 on September 14, 1999. A laboratory control sample, along with a site specific MS/MSD pair on sample WP3877-20, was extracted in this batch.

Analysis of sample WP3877-21 yielded concentrations of the analytes acenaphthene and 2-methylnaphthalene over the upper limit of the calibration curve. Reanalysis occurred at a 1:2 dilution successfully. Both sets of data for this sample are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Metals Analysis

The samples of Katahdin Work Order WP3877 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Aqueous-matrix Katahdin Sample Nos. WP3877-(18-26) were initially digested for ICP analysis on 09/16/99 (QC Batch PI16ICW0) in accordance with USEPA Method 3010A. Katahdin Sample No. WP3877-20 was prepared with duplicate matrix-spiked aliquots in this digestion. The sodium (101 ug/L) concentration of the preparation blank that is associated with this QC batch exceeds the laboratory's acceptance limit. Because the measured sodium concentration of all associated sample were more than ten times that of the preparation blank, no corrective action was taken. The digestates of QC Batch PI16ICW0 were consumed before they could be analyzed for antimony, arsenic, lead, selenium, thallium, or zinc. For this reason, Katahdin Sample Nos. WP3877-(18-26) were redigested on 09/22/99 (QC Batch PI22ICW0) and 09/23/99 (QC Batch PI23ICW0) to provide additional digestate for further analysis. Redigestates are identified throughout the accompanying forms and raw data by the suffix "R" appended to the Katahdin Sample No., e.g. "WP3877-018R". Due to laboratory error, none of these samples were redigested with matrix-spiked aliquots, so there are no matrix QC data for antimony, arsenic, lead, selenium or thallium.

ICP analyses of Katahdin Work Order WP3877 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61 ICP spectrometer. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA) Spectrophotometry

Aqueous-matrix Katahdin Sample Nos. WP3877-(18-23) were digested for mercury analysis on 09/14/99 (QC Batch PI14HGW0) in accordance with USEPA Method 7470A. Due to laboratory error, none of these samples were digested with matrix-spiked aliquots, so there are no matrix QC data for mercury.

Mercury analyses of Katahdin Work Order WP3877 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all run QC criteria were met.

Wet Chemistry Analysis

Due to IC instrument failure, alternate methods were approved by Kelly Johnson-Carper for the analysis of nitrate and sulfate.

KATAHDIN ALYTICAL SERVICES	, INC.			LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REP	ORT			2
Tel. (207) 874-2400 Fax (207) 775-4029				
an (201) 110-4020		••		cooler: 2 of 4
-1 (1:	•			COC#
CLIENT: Aratech				SDG#
				DATE / TIME RECEIVED: 09-10-99 ~ 1000
				DELIVERED BY:
PROJECT: CNC CHARLES		\mathcal{L}		RECEIVED BY: HAG ENTRY BY:
PROJECT: O/O U	•	<u> </u>		LIMS ENTRY BY: A3C LIMS REVIEW BY / PM: A2C
1.0				LINIS REVIEW BY / PIVI
Mu	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	<u>u</u>	ַ ם		
2:CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	V			
4. CHAIN OF CUSTODY MATCHES SAMPLES?	OY ,			Asc notitied Paul Calliga
5. TEMPERATURE BLANKS PRESENT?	UZ			TEMP BLANK TEMP (*C)=
6. SAMPLES RECEIVED AT 4°C +/- 27 CE/ICE PACKS PRESENT (YOU N?		ď		COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	9			
8. TRIP BLANK PRESENT IN THIS COOLER		4		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	⊡ Y			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	'			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	Q'			
12. CORRECTIVE ACTION REPORT FILED?		4	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COM	MERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ ;				
			•	
			•	
)	

⁽¹⁾ Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES,	INC.			LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO	ORT		•	2 /.
Tel. (207) 874-2400				PAGE:
Fax (207) 775-4029				cooler 3 of G
		••		COOLER: \mathcal{S} of \mathcal{Q}
-111				COC# —
CLIENT: otratech		_		SDG#
				DATE / TIME RECEIVED: 09-10-99 ~ 1000
	-			DELIVERED BY: FEDGY
PROJECT: CNC CHARLES	TOX)		RECEIVED BY: BKK
PROJECT:	•	_		LIMS ENTRY BY: A) C/ LIMS REVIEW BY / PM: A) C
M				ENIONE VIEW BITT WI. AS C
<i>v-w</i>	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	4			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?		4		·
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (*C)= 3.5
6. SAMPLES RECEIVED AT 4°C ±/- 2?	Y			COOLER TEMP (°C)= NA
ICE I ICE PACKS PRESENT Y) or N?				(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	9 ′			
8. TRIP BLANK PRESENT IN THIS COOLER	U			
9. PROPER SAMPLE CONTAINERS AND VOLUME?	'			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	9			· · · · · · · · · · · · · · · · · · ·
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	1			
12. CORRECTIVE ACTION REPORT FILED?		3	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG-IN NOTES(1): On Some of the	۷١٤	. Cor	Hainers:	COC (+ most bottles) have 14 GLM , a few bottles have
LOG-IN NOTES(1): On some of the	(م۱۱	times	, dates, parc	meters match)
0			•	
°		•		
			1	

Use this s and additional sheets if necessary) to document samples that are received broke check if required. If samples required pH adjustment, record volume and type of preservative additional sheets if necessary) to document samples that are received broke check if required.

CLIENT: SOC# SOC# DATE TIME RECEIVED: 97-0-99-1000 DELIVERED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: LIMS ENTRY BY: LIMS EN	KATAHDIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029				LAB (WORK ORDER) #
PROJECT: CNC CHTAGESTON RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY IPM: A72 1. CUSTODY SEALS PRESENT / INTACT? 2. CHAIN OF CUSTODY PRESENT IN THIS COOLER? 3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C 1/2? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 18. GLM 0.300 No Call better: 18. GLM 0.300 No Call	CLIENT: TETRATELY				SDG# DATE / TIME RECEIVED:
1. CUSTODY SEALS PRESENT / INTACT? 2. CHAIN OF CUSTODY PRESENT IN THIS COOLER? 3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C 1-2? 1. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. LOG-IN NOTES("): 10. COMMENTS COMMENTS ACCOMMENTS ACC		<u>)</u>			RECEIVED BY: RKC LIMS ENTRY BY: A2C
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER? 3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C+62? COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROBRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERL	Mu	YESI	10 E	XCEPTIONS	COMMENTS RESOLUTION
3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C+62? 6. SAMPLES RECEIVED AT 4°C+62? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED (")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES (IN NOTES("): of 2 PAH bothers 18 GLM 0101 are ived by no containers sent hibo about the bothers.	1. CUSTODY SEALS PRESENT / INTACT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C 16.2? CELÉE PACKS PRESENT N? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED!** 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 14. CHAIN OF CUSTOM ACTION ACTIO	2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C+1-2? CELICE PACKS PRESENT ON N? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PRESERVED(")? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES PROPERLY PRESERVED(")? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 16. SAMPLES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 17. VOLATILES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 18. SAMPLES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 19. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 11. SAMPLES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 19. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES PROPERLY ("C) = NA (RECORD COOLER TEMP ONLY IS TE	3. CHAIN OF CUSTODY SIGNED BY CLIENT?	d			
6. SAMPLES RECEIVED AT 4°C 16.2? 6. SAMPLES RECEIVED AT 4°C 16.2? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED (1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED (1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 14. CONTROL OF 2 PA H butters 18 CLM 0 10 1 arrived broken 18 GLM 0 300 1 on all butters 18 GLM 0 30	4. CHAIN OF CUSTODY MATCHES SAMPLES?		1		
(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): LOG-IN NOTES("): of 2 PAH buttles 18 GLMO10 arrived broken 18 GLM 0 300 18	5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 1. 5
8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): LOG-IN NOTES(1): of 2 PAH bottles 18 GLMO101 arrived broken *On chain: 18 GLMO3001, on all bottles: Disa Neth sent fool on COC, 19 GLO1801 has anions listed but no containersent HNO- add do the sent of the containers of the contai			<u>u</u>		
9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 14. SAMPLES PROPERLY PRESERVED(")? 15. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 16. LOG-IN NOTES("): of 2 PAH bottles 18 GLMO101 arrived broken ("On chain: 18 GLM 03001") on all bettles; 17. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 18. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 19. LOG-IN NOTES("): of 2 PAH bottles 18 GLMO101 arrived broken ("On chain: 18 GLM 03001") on all bettles; 18. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 19. LOG-IN NOTES("): of 2 PAH bottles 18 GLMO101 arrived broken ("On chain: 18 GLM 03001") on all bettles; 18. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 19. LOG-IN NOTES("): of 2 PAH bottles 18 GLMO101 arrived broken ("On chain: 18 GLM 03001") on all bettles; 19. Disableth sent fool on COC, 19 GLO1801 has anions listed but no containersent ("HOD attail to the chain in the chain	7. VOLATILES FREE OF HEADSPACE?	g			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(")? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): LOG-IN NOTES("): of 2 PAH buttles 18 GLMO101 arrived broken *On chain: 18 GLMO3001, on all buttles; Discheth sent for on COC, 19 GLOBO1 has anions listed but no containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the state of the containersent HNO, added to the c	8. TRIP BLANK PRESENT IN THIS COOLER	□ Y			
11. SAMPLES PROPERLY PRESERVED(1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): 14. On chain: 18 GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless: 18. GLM 03D01, on all bettless:	9. PROPER SAMPLE CONTAINERS AND VOLUME?	_			
12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): LOG-IN NOTES(1): of 2 PAH buttles 18 GLM 0101 arrived broken *On chain: 18 GLM 0301, on all buttles: 18 GLM 0301 Diss Neth sent for on COC, 19 GLOBOI has anions listed but no containersent HND added to the containersent had added to the containers and the	10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	G			
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE AFCEE OTHER (STATE OF ORIGIN): LOG-IN NOTES(1): of 2 PAH bottles 18 GLMO101 arrived broken *On chain: 18 GLM 03001, on all bettles: 18 GLM 0301 Diss Neth sent for on COC, 19 GLO1801 has anions listed but no containersent \[\begin{align*} \text{HNO} added to the chain in the containersent \[\begin{align*} \text{HNO} added to the chain in the containersent \[\begin{align*} \text{HNO} added to the chain in the chain i	11. SAMPLES PROPERLY PRESERVED(1)?		9		<u></u>
LOG-IN NOTES(1): of 2 PAH bottles 18 GLMO101 arrived broken *On chain: 18 GLM 0301, on all bottles: 1 Disableth sent food on COC, 19 GLOBOI has anions listed but no containersent hope added to take the	12. CORRECTIVE ACTION REPORT FILED?			N/A	
LOG-IN NOTES(1): of 2 PAH bottles 18 GLMO101 arrived broken *On chain: 18 GLM 0301, on all bottles: 1 Disableth sent food on COC, 19 GLOBOI has anions listed but no containersent hope added to take the	13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL CL	P HAZW	RAP (NFESC) ACOE	AFCEE OTHER (STATE OF ORIGIN):
DissHeth sent for on COC, 19 GLOBOI has anions listed but no containersent Lyhno, added to metals for:	-	ottles 1	8 G L	10101 arrived	broken *On chain: 18 GLM 03DOI, on all bettles:
- HACLOINAL BUT I " 1961 MINAL GOES NOT LIST QUILONS, DUT BOTTLE SEAT FOR QUILONS! SECTIONS SECTIONS	5 Diss Heth sent for on COC, 19GL	-01B01	nas a	nions listed	out no containersent L HND add to late !
not on COC 1 of 3 voa vials for 1964/10601 arrived broken [1864/10201, 1864/10201, 1864/10201),	not on COC 1-03 100 Wal	101001	aors i	on la arrived by	1864MOZOI, 1864MOZOID.

Use this apace (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if raquired. If samples raquired pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029		٠.		PAGE: 5 OF 6 COOLER: 5 OF 6
PROJECT: CNC CHARLESTON	<u> </u>	-		DATE / TIME RECEIVED: 09-(0-99^ /OX) DELIVERED BY: RECEIVED BY: LIMS ENTRY BY:
	•			LIMS REVIEW BY / PM: 40c
Mu	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	U			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?	1			·
5. TEMPERATURE BLANKS PRESENT?	4			TEMP BLANK TEMP (*C)=
6. SAMPLES RECEIVED AT 4°C +1-2? CE ICE PACKS PRESENT Y OF N?	U		. 🗆	COOLER TEMP (*C)= <u>NA</u> (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER				
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Y			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	4			
11. SAMPLES PROPERLY PRESERVED(1)?		13		<u> </u>
12. CORRECTIVE ACTION REPORT FILED?			N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL (CLP HA	ZWRAP (NFESC)ACC	E AFCEE OTHER (STATE OF ORIGIN):
	55. Me	than	voa (1 of 3)	has head space a bunch of small bubbles (maybe
		`,)	

KATAHDIN . NALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029				PAGE: 0 OF 6 COOLER: 0 OF 6
PROJECT: CNC (HAKLESTON)	 - -		COC# SDG# DATE / TIME RECEIVED: D9-10-99 ~ 1000 DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM: A2 C
Vm	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	4			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		_9		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				<u> </u>
4. CHAIN OF CUSTODY MATCHES SAMPLES?	1			
5. TEMPERATURE BLANKS PRESENT?			, u	TEMP BLANK TEMP (°C)= D.8 4/12/99
6. SAMPLES RECEIVED AT 4°C - 27 ICE I ICE PACKS PRESENT Y OF N?				COOLER TEMP (*C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	9			
8. TRIP BLANK PRESENT IN THIS COOLER		U		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	9 ′			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	4			
11. SAMPLES PROPERLY PRESERVED(1)?				
12. CORRECTIVE ACTION REPORT FILED?		9	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	MERCIAL	CLP HAZ	WRAP (NFESC)	COE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
			•	
)		

0000103

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of pressrvative added.

Katahdin

Katahdin

340 County Road No. 5
P.O. Box 720
Westbrook, ME 04098

CHAIN of CUSTODY

1.5		07) 775-4029						PLEAS	E PRIN	IN PE	1	Pag	ge <u> </u>	of
Clier	Teta Tec ess [40] oven t	h Nus	, i	Contac	ثدا د	alliga	√ (*hone #	38.	5 - 98	99 Fa	- (02)	385~	9860
Addr	ess (1)0) oven t	lark bive	City			ડડેં હવે	S	tate	Cr_		Zip Code	. Z 2	317	-
Purc	hase Order #	Proj.	Name / N	lo.	cnc	المر /	AT THE	Noll	4ء	Katahdi	n Quote	#		
Bill (f different than above)				Idress				_					
Sam	pler (Print / Sign) JAJOA	MEGUN	Ja	m l	M	Fm~	~	_	Copie	es To:				
LA		* WP387	7 -							VATIVES	,			
OEM	KATAHDIN PRO	DJECT MANAGER	 .		Filt. DYDN	Filt.	Filt.	Filt. DY D N	Filt.	Filt.	Filt.	Filt.	Filt. DYDN	Filt.
	Anna.				[wowe]	為天	\$ F						,	
	PING INFO: FED EX	□ ups	CLIE	NT	3	ج . چ .	₹2							
	NILL NO:	C D INTACT	□ NOT	INTACT	+	2, €	Ĭ.							
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	PaH	Total Mayo. (140)	5,0							
	34 GLM 0101	9/8/99/1725	GW	WY3	.0	D	3							
٦	34 GLM0201	9/8/99/1748	てら	14×18	2	3	3							
\top	34 GLM0301	9/8/99/1848	CM	8 KW	2	3	3							
	34 GLM02010	9/8/99/	CW	W8 8	2	3	3	-			_			
	34TL00201	9/8/99/ -		.1	-	Tip	Blan	K						-
		/					-		-		_			-
		/				1			 					
		/												
\neg		/				-								
		/		(C 50	ter	1 8	F.	X(
		/									3P			
		/												_
7		/				1						1		
		/												
7		/				ļ	 							†
\exists		/		1 -					-		_	<u> </u>		
СОМ	MENTS		'				'	<u>.</u>						
							.,	_						1d _
	linquished By: (Signature)	ate / Time Rece 9/79 1909 Felex	eived By: (Signatur 457	e) 3800	Relinquis	shed By:	(Sıgnatu	9-10	ate / Ti		Received	By: (Sig) ——
<u> </u>			eived By: (Relinquis	hed By:	(Signatu	re) D	ate / Ti		Received	Sigr	nature)

340 County Road No. 5 Tel: (207) 874-2400

CHAIN of CUSTODY

P.O Box 720 Westbrook, ME 04098 **PLEASE PRINT IN PEN** Fax: (207) 775-4029 Phone # 385 - 9899 (856) 385-9860 Contact Tech NUS Paul Calligan 1 Hol over park pine c Zip Code 了2312 State [1 city Tallahussee Address CNC/N0141 Proj. Name / No. Katahdın Quote # Purchase Order # Bill (if different than above) Jan 1. Water JASON MECOUN Copies To: Sampler (Print / Sign) ANALYSIS AND CONTAINER TYPE PRESERVATIVES LAB USE ONLY Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. KATAHDIN PROJECT MANAGER REMARKS: SHIPPING INFO: ☐ FED EX ☐ ups ☐ CLIENT AIRBILL NO:_ ☐ TEMP BLANK □ INTACT ☐ NOT INTACT TEMP°C Date / Time No. of Sample Description Matrix Cntrs. 9/8/99/1225 14 GLM 0101 4 GW 9/8/99/1430 GW 14 Grw0301 9/8/94/1210 146LM0301 9/8/99/20 4GL MOZOID 2 14 TL 00201 9/0/99/ Trip Blank COMMENTS Puton Ice you Relinquished By: (Signature) Date / Time Received By: (Signature) Date / Time Relinquished By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Signature)

ORIGINAL

CHAIN of CUSTODY

	Fax: (2	7) 874-2400 07) 775 -402 9					I	PLEASE	PRINT	IN PEN	1	Paç	ge	of
Cli	ent tetra Teda A	JUS Inc		Contac	t		P (hone #			Fa:	x#)		
Ac	Idress NH-21 A	tue H	City N	.ch	ack	ster	St	ate 5	. C .		Zıp Code	•		
Pu	rchase Order #		Name / No			, -		Katahdin Quote #						
Bil	(if different than above)	10 - 1		Ad	ldress									
Sa	mpler (Print / Sign)	š.Kill				•			Copie	s To:				
L	AB USE ONLY WORK ORDER	" WP3877	· - ·						PRESER	VATIVES	;			
DE	KATAHDIN PRO	JECT MANAGER			Filt.	Filt	Filt. OYON	Filt. DYDN	Filt.	Filt.	Filt.	Filt. OYON	Filt.	Filt.
	IMANO.			<u> </u>	14				·					
	IIPPING INFO:	□ UPS	CLIENT	r	E S	Ŧ	جي	21/2/2	Joe S					
TE	MP°C O TEMP BLANK	☐ INTACT	O NOT IN	ПАСТ	四位	F.A.	15 3	23	655					
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	F 2		7	A.E	75					
_	2361M0201	19/9/1/40	5.W	10	3	2	1	1	3					
	236280201	1/1350	$\perp \perp$	10	3	ュ		1	_3_					
	236LM0301	1/1445	11	10	3_	a	1	1	3					
	23TL00101	V /0800	Y	2	2									_
		/						<u>'</u>						
		/												
		/												
		/												
		/												
		/								_				
		_/			1									
_		/		_	C	colt	N	50	ZQ				_	
		/		_					B					
		/												
		/_												
-		/												
СО	MMENTS													
	JKiles 9/		red By: (Si 31345				hed By: (910	ate Tir	me F	Pedived	By 18	* \e)
F	Minquished By: (Signature) Da	e / Time Receiv	ed By: (Si	gnature	;) F	Relinquis	hed By: (Signature	e) Da	ate / Ti	me F	Received	Sign	ature)

340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400

CHAIN of CUSTODY

PLEASE PRINT IN PEN Page_ TRA TECH NUS YAUL CALLALAN (850) 385 9879 02 city TALLAHASSEL State FC Zip Code Purchase Order # Proj. Name / No. Katahdin Quote # Bill (if different than above) Address Sampler (Print / Sign) Copies To: ANALYSIS AND CONTAINER TYPE PRESERVATIVES WORK ORDER #: LAB USE ONLY KATAHDIN PROJECT MA REMARKS: 3 O FED EX UPS CLIENT SHIPPING INFO: AIRBILL NO. ☐ NOT INTACT TEMP°C TEMP BLANK ☐ INTACT Date / Time Sample Description Matrix Cntrs. coll'd 919199/1046 GW 196611301 196LM0601 GW 3 GW 186601 FO) 2 FLDIDOI GW 2 196LM 0301 GW 196601 CO1 1864mo3DO1 (JW) 186LOIEO1 GW 3 186LM 0201 18 cm 0201 0 COW 19 6LM 0201 M GW GW 10 2 18 GLMOLOI BUTUK T 18TL M00101 Tail COMMENTS CE ceiyee By (Signature) By: (Signature) Relinquished By: (Signature) Date / Time epeived By: (Signature) 9-40-99 1000 Received By: (Signature) Relinquished By: (Signature) Date / Time Date / Time Relinquished By: (Signature) Received By: (Signature)

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-3877		: Andrea J. Colby	
REPORT TO: Paul Calligan Tetra Tech NUS 1401 Oven Park Dr., Suite 102 Tallahassee, FL 32308	PH	DER DATE: 09/10/99 CONE: 850/385-986 FAX: 850/385-986 DUE: 10 OCT D: CNC CHARLESTON	•
INVOICE: ACCOUNTS PAYABLE TETRA TECH NUS, INC. FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220		ONE: 412/921-7090 PO: N7912-P99264	
SAMPLED BY: CLIENT DELIVERED BY: F	EDEX DISE	POSE: AFTER 09 NOV	
ITEM LOG NUMBER SAMPLE DESCRIPTION 1 WP3877-1 34GLM0101	SAMPLED DATE/TIME 08 SEP 1725	RECEIVED MATRIX 10 SEP AQ	
DETERMINATION CANCEL ANALYSIS	METHOD OTY 1	PRICE AMOUNT 0.00 0.00	
LOG NUMBER SAMPLE DESCRIPTION 2 WP3877-2 34GLM0201	SAMPLED DATE/TIME 08 SEP 1748	RECEIVED MATRIX 10 SEP AQ	
WP3877-3 34GLM0301 WP3877-4 34GLM0201D WP3877-5 14GLM0301D	08 SEP 1848 08 SEP 08 SEP		
DETERMINATION Polynuclear Aromatic Hydrocarbons Volatile Organics by 8260B CANCEL ANALYSIS	METHOD QTY EPA 8270 4 SW8260 4 4	PRICE AMOUN 125.00 500.00 75.00 300.00 0.00 0.00	
TOTALS	4	200.00 800.00	
LOG NUMBER SAMPLE DESCRIPTION WP3877-6 34TL00201 WP3877-7 14TL00201 WP3877-8 18TL00101 WP3877-9 23TL00101	SAMPLED DATE/TIME 08 SEP 08 SEP 09 SEP 09 SEP 0800	RECEIVED MATRIX 10 SEP AQ	
DETERMINATION Volatile Organics by 8260B	METHOD OTY SW8260 4	PRICE AMOUNT 75.00 300.00	

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WP-3877 Project Manager: Andrea J. Colby ORDER DATE: 09/10/99 PHONE: 850/385-9899 TT TO: Paul Calligan RF FAX: 850/385-9860 Tetra Tech NUS 1401 Oven Park Dr., Suite 102 DUE: 10 OCT Tallahassee, FL 32308 FAC. ID: CNC CHARLESTON ACCOUNTS PAYABLE PHONE: 412/921-7090 INVOICE: TETRA TECH NUS, INC. PO: N7912-P99264 FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220 PROJECT: CTO #68 SAMPLED BY: CLIENT DELIVERED BY: FEDEX DISPOSE: AFTER 09 NOV LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3877-10 14GLM0101 08 SEP 1225 10 SEP AΟ DETERMINATION METHOD OTY PRICE TRUDOMA 353.2 1 30.00 Nitrate as N 30.00 Sulfate 375.4 1 0.00 0.00 CANCEL ANALYSIS 1 0.00 0.00 30.00 TOTALS 1 30.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3877-11 14GLM0201 08 SEP 1430 10 SEP 08 SEP (1210) / WP3877-12/(14GLM0301) 09 SEP 1045 WP3877-16 19GLO1D01 WP3877-14 19GLM0301 09 SEP 1059 METHOD OTY PRICE DETERMINATION **AMOUNT** 353.2 Nitrate as N 4 30.00 120.00 375.4 0.00 Sulfate 4 0.00 Polynuclear Aromatic Hydrocarbons EPA 8270 4 125.00 500.00 Volatile Organics by 8260B SW8260 4 75.00 300.00 CANCEL ANALYSIS 4 0.00 0.00 TOTALS 230.00 920.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3877-15 19GLM0601 09 SEP 1600 10 SEP ΑQ 09 SEP 1040 WP3877-13 19GLO1B01 WP3877-17 09 SEP 1033 19GLO1C01 DETERMINATION METHOD OTY PRICE AMOUNT Volatile Organics by 8260B SW8260 3 75.00 225.00 Polynuclear Aromatic Hydrocarbons EPA 8270 3 125.00 375.00

TOTALS

200.00

600.00

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 3

ORDER NO WP-3877 Project Manager: Andrea J. Colby

ORDER DATE: 09/10/99 PHONE: 850/385-989

REPORT TO: Paul Calligan PHONE: 850/385-989
Tetra Tech NUS FAX: 850/385-9869

FAX: 850/385-986. DUE: 10 OCT

1401 Oven Park Dr., Suite 102

FAC.ID: CNC CHARLESTON

Tallahassee, FL 32308

INVOICE:

ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC. PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO #68

SAMPLED BY: CLIENT DELIVERED BY: FEDEX DISPOSE: AFTER 09 NOV

LOG NUMBER SAMPI	E DESCRIPTION	SAMPLED I	DATE/TIME	RECEIVE	D MATRIX
7 WP3877-18 18GLC	01F01	09	SEP 1510	10 SE	P AQ
WP3877-19 18GLN	103D01	09	SEP 1601		
WP3877-20 18GLN	10201	09	SEP 1517		
WP3877-21 18GLN	10201D	09	SEP 0000		
DETERMINATION		METHO	YTO CC	PRICE	AMOUNT
Volatile Organics	by 8260B	SW8260	4	75.00	300.00
Polynuclear Aroma	tic Hydrocarbons	EPA 827	70 4	125.00	500.00
Target Analyte Li	st Metals, Total		4	100.00	400.00
TOTALS			4	300.00	1200.00

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE	/TIME	RECEIVED	MATR.
8	WP3877-22	18GLO1E01	09 SEP	1605	10 SEP	AQ
	WP3877-23	18GLM0101	09 SEP	1550		
	<u>DETERMINATIO</u>	ON	<u>METHOD</u>	QTY	PRICE	AMOUNT

<u>DETERMINATION</u>	METHOD	<u>O</u> TY	PRICE	AMOUNT	
Volatile Organics by 8260B	SW8260	2	75.00	150.00	
Polynuclear Aromatic Hydrocarbons	EPA 8270	2	125.00	250.00	
Nitrate as N	353.2	2	30.00	60.00	
Sulfate	375.4	2	0.00	0.00	
CANCEL ANALYSIS		2	0.00	0.00	
Target Analyte List Metals, Total		2	100.00	200.00	
TOTALS		2	330.00	660.00	

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 4

ORDER NO WP-3877

Project Manager: Andrea J. Colby

ORDER DATE: 09/10/99

RT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 10 OCT

Tallahassee, FL 32308

FAC. ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: CLIENT

DELIVERED BY: FEDEX

DISPOSE: AFTER 09 NOV

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
9	WP3877-24	23GLM0201	09 SEP 1140	10 SEP	AQ
	WP3877-25	23GLX0201	09 SEP 1350		
	WP3877-26	23GLM0301	09 SEP 1445		

<u>DETERMINATION</u>	METHOD	OTY	PRICE	AMOUNT
Volatile Organics by 8260B	SW8260	3	75.00	225.00
Polynuclear Aromatic Hydrocarbons	EPA 8270	3	125.00	375.00
Lead, Total	200.7/6010	3	20.00	60.00
Nitrate as N	353.2	3	30.00	90.00
CANCEL ANALYSIS		3	0.00	0.00
Sulfate	375.4	3	0.00	0.00
TOTALS		3	250.00	750.00

ORDER NOTE: QC-II+ W/NARRATIVE

DD(KAS007QC-DB3) CNC CHARLESTON

NFESC

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

"'OICE: With Report

TOTAL ORDER AMOUNT \$5,260.00

This is NOT an Invoice

AJC/WEST.AJC(dw) 10-04Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

≎lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-5

SDG:

WP3877

Report Date:

10/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/25/99

Sample Description	Matrix San	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0201D	AQ	9/8/99	9/10/99	9/13/99	LAP	EPA 3510	SW
				Sample	Method		<u> </u>
Compound	Result	Units	DF	PQL	PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
YRENE	<10	ug/L	1.0	10	10		
JENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	66	%	1.0				
2-FLUOROBIPHENYL	65	%	1.0				
TERPHENYL-D14	65	%	1.0				

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-5

SDG:

WP3877

Report Date:

10/5/99

PO No. :

CTO #68

N7912-P99264

Project: % Solids:

N/A

Method:

SW8260 Date Analyzed: 9/11/99

Sample Description	Matrix Sa	impled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0201D	AQ	9/8/99	9/10/99	9/11/99	zst	5030	zac
(Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	100	%	1.0				
1,2-DICHLOROETHANE-D4	96	%	1.0				
TOLUENE-D8	88	%	1.0				
P-BROMOFLUOROBENZENE	88	%	1.0				

nt:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-7

SDG:

WP3877

Report Date: PO No.:

10/5/99

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

9/11/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14TL00201	PΑ	9/8/99	9/10/99	9/11/99	JSS	5030	JSS
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	103	3 %	1.0				
`-DICHLOROETHANE-D4	95	%	1.0				
LUENE-D8	88	%	1.0				
P-BROMOFLUOROBENZENE	87	%	1.0				

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-3877-10

Report Date: 10/12/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 10

SAMPLE DESCRIPTION	TAM	RIX		SAMPLED 1	BX	SAMPLED D	ATE	RECEIVED
14GLM0101	Aqu	eous		CLIENT		09/08/9	9	09/10/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	<0.050 2.0	mg/L mg/L	1.0 1.0		353.2 300.0	09/10/99 09/23/99	KW CF	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/12/99

LJO/baeajc (dw) /msm PI10NOW1

CC: MS. LEE LECK TEIRA TECH NOS FOSTER PLAZA 7 661 ANDERSEN DR.

Lab Number : WP-3877-11

CLIENT: Paul Calligan Report Date: 10/12/99

Tetra Tech NUS PO No. : N7912-P99264 1401 Oven Park Dr., Suite 102 Project : CTO #68

Tallahassee, FL 32308

WICH: CNC CHARLESTON REPORT OF ANALYTICAL RESULTS Page 2 of 10

SAMPLE DESCRIPTION	MAI	TRIX		SAMPLED 1	BY	SAMPLED D	ATE	RECEIVED
14GLM0201	Aqu	ieous		CTIENL		09/08/9	9	09/10/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BX	NOTES
Nitrate as N Sulfate	<0.050 2.7	mg/L mg/L	1.0		353.2 300.0		KW	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/12/99

LTO/baeajc(dw)/msm PI10NOW1

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

WP3877-11

SDG:

WP3877

PO No. :

10/5/99 N7912-P99264

Project:

CTO #68

% Solids:

...

Method:

N/A

Date Analyzed: 9/25/99

EPA 8270

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0201	AQ 9/8/99		9/10/99	9/13/99	LAP	EPA 3510	sw
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZIA, HJANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	73	%	1.0				
2-FLUOROBIPHENYL	73	%	1.0				
TERPHENYL-D14	75	%	1.0				

nt: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-11

SDG:

WP3877

Report Date: PO No.;

10/5/99

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/11/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0201	ΩA	9/8/99	9/10/99	9/11/99	JSS	5030	JSS
Compound	Res	uit Units	DF	Sample PQL	Method PQL	<u>.</u>	
BENZENE	<	5 ug/L	1.0	5	5		
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	5 ug/L	1.0	5	5		
ETHYLBENZENE	<5	5 ug/L	1.0	5	5		
NAPHTHALENE	<5	5 ug/L	1.0	5	5		
MTBE	<	5 ug/L	1.0	5	5		
TOTAL XYLENES	<5	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	10	1 %	1.0				
-DICHLOROETHANE-D4	97	7 %	1,0				
JLUENE-D8	89	9 %	1.0				
P-BROMOFLUOROBENZENE	90) %	1.0				

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-3877-12

Report Date: 10/12/99 PO No.

: N7912-P99264

Project

: CIO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 10

SAMPLE DESCRIPTION	MATRIX			SAMPLED I	SAMPLED DATE RECEIVED			
14GIM0301	Aqu	ecus		CLIENT		09/08/9	9	09/10/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	0.072 560.	mg/L mg/L	1.0 40		353.2 375.4	09/10/99 10/04/99	KW	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/12/99

LJO/baeajc (dw) /msm PI10NOW1

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

340 Comm Road No. 5 P.O. Box. 720, Westbrook, ME 04098 Tel: (207) 874-2400 Fax. (207) 775-4029

ant: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-12

SDG:

WP3877

Report Date:

10/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

Date Analyzed: 9/25/99

EPA 8270

Sample Description	Matrix San	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
14GLM0301	AQ 9/8/99		9/10/99	9/13/99	LAP	EPA 3510	sw
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTH A LENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
'RENE	<10	ug/L	1.0	10	10		
_NZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO(A)PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	74	%	1.0				
2-FLUOROBIPHENYL	73	%	1.0				
TERPHENYL-D14	80	%	1.0				

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3877-12

SDG:

WP3877

Report Date: PO No.:

10/5/99

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

Date Analyzed:

SW8260 9/11/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
14GLM0301	ΑQ	9/8/99	/8/99 9/10/99		JSS	5030	Jss	
Compound	Resu	lt Units	DF	Sample PQL	Method PQL			
BENZENE	<5	ug/L	1.0	5	5			
TOLUENE	<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5			
ETHYLBENZENE	<5	ug/L	1.0	5	5			
NAPHTHALENE	<5	ug/L	1.0	5	5			
MTBE	<5	ug/L	1.0	5	5			
TOTAL XYLENES	<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	100	%	1.0					
1,2-DICHLOROETHANE-D4	97	%	1.0					
TOLUENE-D8	88	%	1.0					
P-BROMOFLUOROBENZENE	88	%	1.0					

Method Blank and Laboratory Control Sample Results

Client: Tetra Tech NUS Work Order: WP3877

METHOD BLANK RESULTS

LABORATORY CONTROL SAMPLE RESULTS

	Date	Date		C	oncentration	n	Practical		True	Measured	Percent	Acceptance	Acceptance
	of	of	Units		Measured	Acceptance	e Quantitation	Units	Value	Value	Recovered	Range	Range
Parameter	Prep	Analysis			in Blank	Range	Level**					(%)	(mg/kg)
Nitrate-Nitrogen	10-Sep-99	10-Sep-99	mg/L	<	0.050	< 0.050	0.050	mg/L	1.00	0.82	82.0	80-120	
	10-Sep-99	10-Sep-99	mg/L	<	0.050	< 0.050	0.050	mg/L	1.00	1.06	106.0	80-120	
Sulfate	23-Sep-99	23-Sep-99	mg/L	<	1.0	< 1.0	1.0	mg/L	10	10	100.0	80-120	
	24-Sep-99	24-Sep-99	mg/L	<	1.0	< 1.0	1.0	mg/L	10	10	100.0	80-120	
	04-Oct-99	04-Oct-99	mg/L	<	1.0	< 1.6	1.0	mg/L	250	223	89.2	83-112	@

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

@ The laboratory uses the internally established statistical 99% confidence range as the acceptance range for this LCS.

Duplicate and Matrix Spike/Matrix Spike Duplicate Results

Client: Tetra Tech NUS Work Order: WP3877

DUPLICATE RESULTS

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

			2 01 01011111 1111111111														
			Sample			_	Acceptance		Concer	tration o	or Quant	ity	Matrix Sp	ike Recove	ту (%)		
•	Katahdin		Measurem	ients	Mean		Range	Units	Sampl	Spike	Sample	Sample	Sample	Sample	Acceptance	RPD	Acceptance
Parameter	Sample No	Units	Rep 1	Rep 2	Conc	RPD	for RPD		Only	Added	+Spike	+Spike	+Spike	+Spike	Range	(%)	Range
						(%)	(%)				Dup 1	Dup 2	Dup 1	Dup 2	(%)		(%)
Nitrate - N	WP3877-12	mg/L	0.072	0.067	0.070	7.2	0-20	mg/L	0.07	0.5	0.362		58.0 *	1	75-125		0-20
Sulfate	WP3877-24	mg/L	15.892	15.814	15.853	0.5	0-20	mg/L	15.9	10	24.2		83.0		75-125		0-20

RPD = Relative percent difference, which is the absolute value of the difference between two replicate results divided by the mean concentration then multiplied by 100%.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

* Matrix spike recovery is outside the laboratory's specified acceptance range indicating potential sample matrix interference and potential bias of reported value for this parameter.

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;091399

Lab Name: Katahdin Analytical Services

SDG No.: WP3877

Lab File ID:

Z2065

Lab Sample ID: SBLK;091399

Instrument ID:

5972-Z

Date Extracted: 9/13/99

GC Column:

RTX-5

(mm)

Date Analyzed: 09/16/99

Matrix: (soil/water) WATER

ID: 0.25

Time Analyzed: 20:31

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;091399	LCS;091399	Z2070	9/17/99	10:59:00 AM
LCSD;091399	LCSD;091399	Z2071	9/17/99	11:47:00 AM
34GLM0201	WP3877-2	Z2138	9/24/99	11:10:00 PM
34GLM0301	WP3877-3	Z2139	9/24/99	11:56:00 PM
34GLM0201D	WP3877-4	Z2140	9/25/99	12:44:00 AM
14GLM0301D	WP3877-5	Z2141	9/25/99	1:32:00 AM
14GLM0201	WP3877-11	Z2142	9/25/99	2:19:00 AM
14GLM0301	WP3877-12	Z2143	9/25/99	3:06:00 AM
19GLO1B01	WP3877-13	Z2144	9/25/99	3:54:00 AM
19GLM0301	WP3877-14	Z2145	9/25/99	4:42:00 AM
19GLM0601	WP3877-15	Z2146	9/25/99	5:30:00 AM
19GLO1D01	WP3877-16	Z2148	9/27/99	9:45:00 AM
19GLO1C01	WP3877-17	Z2149	9/27/99	10:32:00 AM
18GLO1F01	WP3877-18	Z2150	9/27/99	11:18:00 AM
18GLM03D01	WP3877-19	Z2151	9/27/99	12:04:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;091399

SDG:

WP3877

Report Date: PO No.:

10/5/99

Project:

N7912-P99264

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/16/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;091399	AQ	-	-	9/13/99	LAP	EPA 3510	sw
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10) ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10) ug/L	1.0	10	10		
FLUORENE	<10) ug/L	1.0	10	10		
PHENANTHRENE	<10) ug/L	1.0	10	10		
ANTHRACENE	<10) ug/L	1.0	10	10		
FLUORANTHENE	<10) ug/L	1.0	10	10		
PYRENE	<10) ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10) ug/L	1.0	10	10		
CHRYSENE	<10) ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10) ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10) ug/L	1.0	10	10		
BENZO(A)PYRENE	<10) ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10) ug/L	1.0	10	10		
DIBENZ(A,H)ANTHRACENE	<10) ug/L	1.0	10	10		
BENZO(G,H,I)PERYLENE	<10) ug/L	1.0	10	10		
NITROBENZENE-D5	66	%	1.0				
2-FLUOROBIPHENYL	67	%	1.0				
TERPHENYL-D14	66	%	1.0				

Report Notes:

Katahdin Analytical Services LCS/LCSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
LCS;091399	Z2070	9/17/99	10:59	KRT	AQ	8270
LCSD;091399	Z2071	9/17/99	11:47	KRT	AQ	8270

	Spk Amt	LCS Result	LCSD Resul	t LCS Rec	LCSD Rec	Rec. Limits	RPD	RPD Limit
Compound Name	ug/L	ug/L	ug/L	(%)	(%)	(%)	(%)	(%)
2-METHYLNAPHTHALENE	50	30.5	30.4	*61	*61	70-130	0	30
ACENAPHTHENE	50	31.7	30.9	*63	*62	70-130	1.6	30
ACENAPHTHYLENE	50	31.8	31.2	•64	•62	70-130	3.2	30
ANTHRACENE	50	33.9	31.2	•68	•62	70-130	9.2	30
BENZO[A]ANTHRACENE	50	34.2	31.8	•68	*64	70-130	6.1	30
BENZO[A]PYRENE	50	33.7	31.2	•67	•62	70-130	7.8	30
BENZO[B]FLUORANTHENE	50	30.0	27.5	•60	*55	70-130	8.7	30
BENZO[G,H,I]PERYLENE	50	34.9	33.7	70	*67	70-130	4.4	30
BENZO[K]FLUORANTHENE	50	39.4	35.2	79	70	70-130	12	30
CHRYSENE	50	38.2	35.3	76	71	70-130	6.8	30
DIBENZ[A,H]ANTHRACENE	50	33.1	32.3	*66	•65	70-130	1.5	30
FLUORANTHENE	50	34.6	32.2	•69	*64	70-130	7.5	30
F' 'ORENE	50	31.9	30.8	•64	•62	70-130	3.2	30
10[1,2,3-CD]PYRENE	50	34.8	35.0	70	70	70-130	0	30
NAPHTHALENE	50	31.2	31.0	•62	•62	70-130	0	30
PHENANTHRENE	50	34.0	32.0	•68	*64	70-130	6.1	30
PYRENE	50	36.4	33.3	73	*67	70-130	8.6	30

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;091499

Lab Name: Katahdin Analytical Services

SDG No.: WP3877

Lab File ID:

Z2054

Lab Sample ID: SBLK;091499

Instrument ID:

5972-Z

Date Extracted: 9/14/99

GC Column: RTX-5

ID: 0.25

(mm)

Date Analyzed: 09/16/99

Matrix: (soil/water) WATER

Time Analyzed: 11:41

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;091499	LCS;091499	Z2055	9/16/99	12:28:00 PM
18GLM0201	WP3877-20	Z2152	9/27/99	12:51:00 PM
18GLM0201D	WP3877-21	Z2153	9/27/99	1:36:00 PM
18GLO1E01	WP3877-22	Z2154	9/27/99	2:23:00 PM
18GLM0101	WP3877-23	Z2155	9/27/99	3:09:00 PM
23GLM0201	WP3877-24	Z2156	9/27/99	3:56:00 PM
23GLX0201	WP3877-25	Z2157	9/27/99	4:41:00 PM
23GLM0301	WP3877-26	Z2158	9/27/99	5:29:00 PM
18GLM0201MS	WP3877-20MS	Z2159	9/27/99	6:15:00 PM
18GLM0201MSD	WP3877-20MSD	Z2160	9/27/99	7:01:00 PM
18GLM0201D	WP3877-21DL	Z2161	9/27/99	7:48:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

^lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;091499

SDG:

WP3877

Report Date:

10/5/99

PO No.:

N7912-P99264

Project:

CTO #68 N/A

% Solids: Method:

EPA 8270

Date Analyzed: 9/16/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;091499	AQ	-	-	9/14/99	DS	EPA 3510	sw
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10		
FLUORANTHENE	<1	0 ug/L	1.0	10	10		
PYRENE	<1	0 ug/L	1.0	10	10		
ENZO[A]ANTHRACENE	<1	0 ug/L	1.0	10	10		
CHRYSENE	<1	0 ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
NDENO[1,2,3-CD]PYRENE	<1	0 ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<1	0 ug/L	1.0	10	10		
BENZO[G,H,i]PERYLENE	<1	0 ug/L	1.0	10	10		
NITROBENZENE-D5	54		1.0				
2-FLUOROBIPHENYL	56	5 %	1.0				
TERPHENYL-D14	66	8 %	1.0				

Report Notes:

none

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: Z2055

Sample ID: LCS;091499

Date Run: 9/16/99

Analyst: KRT

Time Injected: 12:28:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	28.8	+58	70-130
ACENAPHTHENE	50	30.1	•60	70-130
ACENAPHTHYLENE	50	29.9	•60	70-130
ANTHRACENE	50	30.4	•61	70-130
BENZO[A]ANTHRACENE	50	31.6	•63	70-130
BENZO[A]PYRENE	50	31.1	*62	70-130
BENZO[B]FLUORANTHENE	50	28.6	*57	70-130
BENZO(G,H,I)PERYLENE	50	28.7	*57	70-130
BENZO(K)FLUORANTHENE	50	35.5	71	70-130
CHRYSENE	50	35.8	72	70-130
DIBENZ[A,H]ANTHRACENE	50	28.0	•56	70-130
FLUORANTHENE	50	32.5	*65	70-130
FLUORENE	50	30.7	•61	70-130
NDENO[1,2,3-CD]PYRENE	50	28.8	*58	70-130
NAPHTHALENE	50	29.8	*60	70-130
PHENANTHRENE	50	31.3	*62	70-130
YRENE	50	32.2	•64	70-130

Katahdin Analytical Services MS/MSD Report

nple	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3877-20	Z2152	9/27/99	12:51:00 PM	sw	AQ	8270_99
WP3877-20MS	Z2159	9/27/99	6:15:00 PM	sw	AQ	8270_99
WP3877-20MSD	Z2160	9/27/99	7:01:00 PM	sw	AQ	8270_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	50	50	43.9	46.2	88	92	60-140	5.1	30
ACENAPHTHENE .	117	50	50	208	198	*181	*161	60-140	4.9	30
ACENAPHTHYLENE	0	50	50	45.7	43.6	91	87	60-140	4.7	30
ANTHRACENE	0	50	50	44.2	45.0	88	90	60-140	1.8	30
BENZO[A]ANTHRACENE	0	50	50	42.7	45.9	85	92	60-140	7.2	30
BENZO[A]PYRENE	0	50	50	41.4	43.6	83	87	60-140	5.2	30
BENZO[B]FLUORANTHENE	0	50	50	40.2	42.4	80	85	60-140	5.3	30
2-METHYLNAPHTHALENE	131	50	50	237	213	*212	*164	60-140	11	30
BENZO[K]FLUORANTHENE	0	50	50	43.6	48.8	87	98	60-140	11	30
PYRENE	0	50	50	42.2	45.0	84	90	60-140	6.4	30
DIBENZ[A,H]ANTHRACENE	0	50	50	40.9	40.6	82	81	60-140	0.74	30
FLUORANTHENE	0	50	50	46.3	50.4	92	101	60-140	8.5	30
FLUORENE	47.5	50	50	120	118	*145	140	60-140	1.7	30
INDENO[1,2,3-CD]PYRENE	0	50	50	43.0	40.8	86	82	60-140	5.2	30
N/ HALENE	5.09	50	50	47.4	43.6	84	77	60-140	8.4	30
PHL .NTHRENE	23.0	50	50	82.3	84.6	119	123	60-140	2.8	30
BENZO[G,H,I]PERYLENE	0	50	50	41.5	40.1	83	80	60-140	3.4	30

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKF11A

Lab Name: Katahdin Analytical Services

SDG No.: WP3877

Lab File ID:

F1820

Lab Sample ID: VBLKF11A

Date Analyzed: 09/11/99

Time Analyzed: 10:00

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSF11A	LCSF11A	F1819	9/11/99	8:56:00 AM
34TL00201	WP3877-6	F1822	9/11/99	11:26:00 AM
14TL00201	WP3877-7	F1823	9/11/99	12:03:00 PM
18TL00101	WP3877-8	F1824	9/11/99	12:40:00 PM
34GLM0201	WP3877-2	F1828	9/11/99	3:06:00 PM
34GLM0301	WP3877-3	F1829	9/11/99	3:42:00 PM
34GLM0201D	WP3877-4	F1830	9/11/99	4:19:00 PM
14GLM0301D	WP3877-5	F1831	9/11/99	4:56:00 PM
23TL00101	WP3877-9	F1832	9/11/99	5:32:00 PM
14GLM0201	WP3877-11	F1833	9/11/99	6:08:00 PM
14GLM0301	WP3877-12	F1834	9/11/99	6:45:00 PM
19GLO1B01	WP3877-13	F1835	9/11/99	7:22:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

^ÿent:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF11A

SDG:

WP3877

Report Date:

10/5/99

PO No.:

Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/11/99

Sample Description	Matrix	Samj	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF11A	ΩA		-	•	9/11/99	JS S	5030	J S S
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHÂNE	1	101	%	1.0				
12-DICHLOROETHANE-D4		94	%	1.0				
LUENE-D8		86	%	1.0				
P-BROMOFLUOROBENZENE		87	%	1.0				

.veport Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: F1819

Sample ID: LCSF11A

Date Run: 9/11/99

Analyst: JSS

Time Injected 8:56:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	54.3	108	60-140
BENZENE	50	46.7	93	60-140
ETHYLBENZENE	50	48.3	96	60-140
MTBE	50	49.7	99	60-140
NAPHTHALENE	50	44.4	89	60-140
TOLUENE	50	48.3	96	60-140
TOTAL XYLENES	150	143	95	60-140

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKF13A

Lab Name: Katahdin Analytical Services

SDG No.: WP3877

Lab File ID:

F1839

Lab Sample ID: VBLKF13A

Date Analyzed: 09/13/99

Time Analyzed: 10:59

GC Column: RTX-624 ID: 0.18 (mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSF13A	LCSF13A	F1838	9/13/99	10:07:00 AM
19GLM0301	WP3877-14	F1840	9/13/99	11:52:00 AM
19GLM0601	WP3877-15	F1841	9/13/99	12:28:00 PM
19GLO1D01	WP3877-16	F1842	9/13/99	1:05:00 PM
19GLO1C01	WP3877-17	F1843	9/13/99	1:41:00 PM
18GLO1F01	WP3877-18	F1844	9/13/99	2:17:00 PM
18GLM03D01	WP3877-19	F1845	9/13/99	2:54:00 PM
18GLM0201	WP3877-20	F1846	9/13/99	3:30:00 PM
18GLM0201D	WP3877-21	F1847	9/13/99	4:07:00 PM
18GLO1E01	WP3877-22	F1848	9/13/99	4:43:00 PM
18GLM0101	WP3877-23	F1849	9/13/99	5:20:00 PM
23GLM0201	WP3877-24	F1850	9/13/99	5:56:00 PM
23GLX0201	WP3877-25	F1851	9/13/99	6:32:00 PM
23GLM0301	WP3877-26	F1852	9/13/99	7:09:00 PM
18GLM0201MS	WP3877-20MS	F1853	9/13/99	7:45:00 PM
18GLM0201MSD	WP3877-20MSD	F1854	9/13/99	8:22:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF13A

SDG:

WP3877

Report Date:

10/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/13/99

Sample Description	Matrix	Samj	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF13A	AQ		-	-	9/13/99	KMC	5030	КМС
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		< 5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		95	96	1.0				
1,2-DICHLOROETHANE-D4		93	%	1.0				
TOLUENE-D8		82	%	1.0				
P-BROMOFLUOROBENZENE		83	%	1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: F1838

Sample ID: LCSF13A

Date Run: 9/13/99

Analyst: KMC

Time Injected 10:07:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	50.6	101	60-140
BENZENE	50	40.5	81	60-140
ETHYLBENZENE	50	44.0	88	60-140
мтве	50	46.8	94	60-140
NAPHTHALENE	50	41.0	82	60-140
TOLUENE	50	42.6	85	60-140
TOTAL XYLENES	150	130	87	60-140

Katahdin Analytical Services MS/MSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3877-20	F1846	9/13/99	3:30:00 PM	KMC	AQ	8260_99
WP3877-20MS	F1853	9/13/99	7:45:00 PM	KMC	AQ	8260_99
WP3877-20MSD	F1854	9/13/99	8:22:00 PM	KMC	AQ	8260_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
TOTAL XYLENES	4.02	150	150	117	114	76	73	60-140	2.6	20
TOLUENE	0	50	50	37.8	37.9	76	76	60-140	0.26	20
NAPHTHALENE	7.44	50	50	60.4	60.4	106	106	60-140	0	20
MTBE	0	50	50	45.5	46.8	91	94	60-140	2.8	20
ETHYLBENZENE	0.760	50	50	39.2	37.8	77	74	60-140	3.6	20
BENZENE	2.90	50	50	39.2	38.6	72	71	60-140	1.5	20
1,2-DIBROMOETHANE	0	50	50	49.2	50.7	98	101	60-140	3.0	20

APPENDIX D AQUIFER CALCULATIONS

SUMMARY OF SLUG TEST

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)

Site Data

01089 SITE ID #:

COUNTY: Charleston

FACILITY NAME:

Site 14, Quarters S, Charleston Naval Complex

Slug Data

See Appendix: Final Zone B RFI Report Table: 2.3 and 2.4 Figure: for a list of all data measurements.

(water level logs, etc.) (Complete as appropriate.)

Water Level Recovery Data was measured by

See Final Zone B RFI Report

(Hermit Data Logger, Manually with Water Level Indicator, etc.) (List Method).

Complete the following table for each well tested.

COMPLETE A SECOND SHEET IF MORE THAN FOUR WELLS ARE TESTED

Slug Test Conducted in well(s) number

Initial Rise/Drawdown in well (feet)

adjus of Well Casing (feet)

Effective Radius of Well (feet)

Static Saturated Aquifer Thickness (feet)

Length of Well Screen (feet)

Static Height of Water Column in Well (ft)

NBCB-GDB-001	NBCB-GDB-002	NBCB-GDB-004	NBCB-GDB-04D

Calculations

See Appendix: Final Zone B RFI Report Table

Figure:

for calculations. (Complete as appropriate.)

The method for aquifer calculations was:

Bouwer and Rice (1976) for (i.e. Bouwer-Rice, Cooper, etc.)

shallow, Cooper for deep

Calculated values by well were as follows:

Slug Test Conducted in well(s) number **Hydraulic Conductivity**

NBCB-GDB-001	NBCB-GDB-002	NBCB-GDB-004	NBCB-GDB-04D
0.00134	0.792	7.92	0.276 (deep well)

Thickness of the aquifer used to calculate hydraulic conductivity was

feet.

The aquifer is

confined

semi-confined

water table (Check as appropriate.)

he estimated seepage velocity is

10.31 feet per year based on

a hydraulic conductivity of 2.9

, a hydraulic gradient of 0.00458, and

X

a porosity of 0.47

per cent for sandy soil (list type i.e., silty sand, clay, etc).

CALCULATION WORKS	HEET		PAGE OF
CLIENT		JOB NUMBER	
Charleston	Naval Complex	0092 0141	E60150105
SUBJECT			
Estimated	Seconde Veloc	te	
BASED ON	_	DRAWING NUMBER	-
BY	CHECKED BY	APPROVED BY	DATE
RAGERS			10-13-99

Assume groundwater flow follows DARCY's LAW

$$V = \left(\frac{K}{\Omega}\right) xi$$

V = Average velocity

K = Mydraulic conductivity = 2.90 ftlday

n = effective porosity = 0.47

(default for sandy soils)

1 = Mydraulic gradient = 0.00458 ftlfa

= 0.038 Alday

APPENDIX E

SOIL AND WATER DISPOSAL MANIFESTS

All soil cuttings and purge water were containerized, the containers labeled, and the containers moved to a staging area for final disposal by Charleston Naval Complex.

APPENDIX F RBCA CALCULATIONS

	Dermal	Incidental Ingestion	Inhalation	Minimum
	RBSL	RBSL	RBSL	RBSL
	mg/L	mg/L	mg/L	mg/L
Benzene	0.85	68.52	0.15	0.15
Toluene	23.98	5677.78	5.38	5.38
Ethylbenzene	6.05	2838.89	14.50	6.05
Xylene	102.33	56777.78	NA*	102.33
Naphthalene	1.63	1135.56	2.63	1.63
MTBE	25.92	141.94	293.44	25.92

^{*}No inhalation reference dose is available for xylenes; therefore, no inhalation RBSL can be calculated.

Dungang Dun	Daviewed Du
Prepared By:	Reviewed By:

Construction Worker Dermal RBSLs

	Kow	MW	Кр	В	τ _{event}	С	b	t*	t _{event}	DAevent
			cm/hr	unitless	hr/event			hr	hr/event	
Benzene	199.5262315	78.1	0.11551543	0.392637855	2.87E-01	6.32E-01	6.03E-01	6.90E-01	1	eq 3.3
Toluene	537.0317964	92.1	0.259561335	0.958068292	3.44E-01	1.13E+00	1.31E+00	1.33E+00	1	eq 3.2
Ethylbenzene	1412.537545	106.2	0.569219802	2.256154884	4.13E-01	2.36E+00	4.39E+00	1.70E+00	1	eq 3.2
Xylene*	1584.893192	106.2	0.638675123	2.531447415	4.13E-01	2.63E+00	5.31E+00	1.72E+00	1	eq 3.2
Naphthalene	1995.262315	128.2	0.605452393	2.636638957	5.48E-01	2.73E+00	5.69E+00	2.29E+00	1	eq 3.2
MTBE	15.136	88.15	0.00769788	0.027797704	3.27E-01	3.52E-01	3.20E-01	7.85E-01	1	eq 3.3

	BW	AT	EV	ED	EF	SA	CSF derm	Rfd derm	Target	RBSL	RBSL
	kg	day	events/day	yrs	days/yr	cm ²	(mg/kg-day) ⁻¹	mg/kg-day	Risk or HQ	mg/L	mg/L
Benzene	70	25550	1	1	90	4500	2.99E-02	NA	1.00E-06		8.52E-01
Toluene	70	365	1	_1	90	4500	NA .	1.60E-01	1.0	2.40E+01	
Ethylbenzene	70	365	1	1	90	4500	NA	9.70E-02	1.0	6.05E+00	
Xylene*	70	365	1	1	90	4500	NA	1.84E+00	1.0	1.02E+02	
Naphthalene	70	365	1	1	90	4500	NA	3.20E-02	1.0	1.63E+00	
MTBE	70	365	1	1	90	4500	NA	5.00E-03	1.0	2.59E+01	

^{*} Kow and MW values for xylene, m-

Prepared By:	Reviewed By:

Construction Worker Incidental Ingestion RBSLs

	BW	AT	IR	ED	EF	Target	CSF oral	Rfd oral	RBSL
	kg	day	L/day	yrs	days/yr	Risk or HQ			mg/L
Benzene	70	25550	0.01	1	90	1.00E-06	2.90E-02		6.85E+01
Toluene	70	365	0.01	1	90	1.0	NA	2.00E-01	5677.778
Ethylbenzene	70	365	0.01	1	90	1.0	NA	1.00E-01	2838.889
Xylene	70	365	0.01	1	90	1.0	NA	2.00E+00	56777.78
Naphthalene	70	365	0.01	1	90	1.0	NA	4.00E-02	1135.556
MTBE	70	365	0.01	1	90	1.0	NA	5.00E-03	141.9444

Prepared By:	Reviewed By:
, <u> </u>	· /

Construction Worker Inhalation RBSLs

Chemical	 Dair	Dwater	Н	Ө асар	θ _{wcap}	θ.	θ,,,,	θ_{T}	Deff-cap	Deff-s
	 cm²/s	cm²/s	cm³/cm³	cm³/cm³	cm³/cm³	cm ³ /cm ³	cm ³ /cm ³	cm³/cm³	cm²/s	cm²/s
Benzene	0 093	1.10E-05	2.26E-01	0.038	0.342	0.33	0.15	0.48	1.35E-05	1.01E-02
Toluene	0.085	9 40E-06	3.01E-01	0.038	0 342	0.33	0.15	0.48	1.07E-05	9.20E-03
Ethylbenzene	0.076	8.50E-06	2.80E-01	0.038	0 342	0 33	0.15	0.48	9.85E-06	8.22E-03
Xylenes	0.072	8.50E-06	2.78E-01	0.038	0.342	0.33	0.15	0.48	9.55E-06	7.79E-03
Naphthalene	0.072	9.40E-06	2.00E-03	0.038	0.342	0.33	0.15	0.48	5.79E-04	7.83É-03
MTBE	0.102	1.05E-05	4.16E-02	0 038	0.342	0.33	0.15	0.48	3.90E-05	1.10E-02

Chemical	hcap	hν	Deff-ws	Uair	δair	Lgw	W	VFwamb	TR (carc)	HI (nonc)
	cm	cm	cm²/s	cm/sec	cm	cm	cm	mg/m³/mg/L		
Benzene	5	117	3.18E-04	225	200	122	1500	1.97E-05	1 00E-06	NA
Toluene	5	117	2.54E-04	225	200	122	1500	2.09E-05	NA	1
Ethylbenzene	5	117	2.34E-04	225	200	122	1500	1.79E-05	NA	1
Xylenes	5	117	2.27E-04	225	200	122	1500	1.72E-05	NA	1
Naphthalene	5	117	5.17E-03	225	200	122	1500	2.83E-06	NA	1
MTBE	5	117	8.79E-04	225	200	122	1500	9.99E-06	NA	1

Chemical	TR (carc)	HI (nonc)	BWadult	AT	Sfi (carc)	RfD (nonc)	IR air	EF	ED	RBSLair	н	RBSLwater
			kg		[mg/kg-day] ⁻¹	[mg/kg-day]	m³/day	day/yr	yr	mg/m ³	cm ³ /cm ³	mg/L
Benzene	1.00E-06	NA	70	70	2.90E-02	NA	20	90	1	3.43E-02	2.26E-01	0.15
Toluene	NA	1	70	1	NA	1.14E-01	20	90		1.62E+00	3.01E-01	5.38
Ethylbenzene	NA	1	70	1	NA	2.86E-01	20	90	1	4.06E+00	2.80E-01	14.50
Xylenes	NA	1	70	1	NA	NA⁴	20	90	1	NA*	2.78E-01	NA*
Naphthalene	NA	1	70	1	NA	3.71E-04	20	90	1	5.27E-03	2.00E-03	2.63
MTBE	NA	1	70	1	NA.	8.60E-01	20	90	1	1.22E+01	4.16E-02	293 443

^{*}No inhalation reference dose is available for xylenes; therefore, no RBSL can be calculated for xylene.

Prepared By:	Reviewed By.
. ,	<u> </u>

IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA

Department of Health and Environmental Control (DHEC)

	+^	1 1~	
		1 124	1 24
\sim	ite	Da	ш

SITE ID# COUNTY Charleston

FACILITY NAME Site 14, Quarters S

STREET ADDRESS Charleston Naval Complex, North Charleston, SC

Soil Risk Evaluation Data

					<u>Figure</u>
TPH		553	mg/kg		
Soil % SAND (Estim	nated)	90	%		
Soil % CLAY (Estim	Soil % CLAY (Estimated)				
Worst Case	Benzene		mg/kg	Cs	
Soil Analyses	Toluene	•	mg/kg	Cs	
	Ethylbenzene		mg/kg	Cs	
	Xylenes		mg/kg	Cs	
	Naphthalene	1.8	mg/kg	Cs	
•			mg/kg	Cs	
Natural Organic Car	bon Content	11900	mg/kg	foc	
Average Annual Red	charge	25	cm	Hw	
Distance from highe	st Soil	-	-		
Impact to water table	e	91	cm	L	
Bulk Density of Soil		1.56	g/cc	Bd	1
Wetting Front Suction	on	10	cm	Hf	2
Soil Hydraulic Cond	5.60E-03	cm/sec	Kf	3	
Porosity	0.43	decimal %	Φ	4	
Residual Water Con	tent	0.03	decimal %	Wr	5
			_		

List possible human exposure pathways from surface soil.

Soil leaching to groundwater - off-site ingestion or irrigational use of shallow groundwater.

Bold indicates site specific input

Italic indicated estimated value from charts on pages C3 through C5 of SCDHEC soil leaching model guidance.

Page 1 of 6 Pages

IN-SITU SOIL RISK EVALUATION

SOIL LEACHABILITY MODEL FOR NAPHTHALENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE	IN	FO:	нм	ΔΤ	ION:

Site: Site 14, Quarters S

Location: Charleston Naval Complex, North Charleston, SC

Charleston

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releeses, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

INPUT:

COC	Chemical of Concern		NAPHTHALENE
Bd	Soil Bulk Density (1)	g/cm3_	1.56
Crsbl	Risk Based Screening Level	mg/L	1.63
Cs	Concentration of COC in soil	mg/kg	1.8
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	11900
H'	Henry's Law Constant (4)	unitless	0.002
Hf	Wetting front suction heed (always negative) (5)	cm cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0056
Koc	Soil/Water Pertioning Coefficient (2)	ml/g	1543
L	Depth between soil sample with	cm	91
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	unitless_	0.43
t1/2	Biodegradation "half life" (2)	days	48
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	553
Wr	Residual Water Content (8)	volume fraction	0.03

CALCULATIONS:

Equation Set I - Determine soil pore water concentration resulting from physical pertioning (Cw).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

$$fcs = (foc + TPH/1.724)*1E-6 = 0.0122$$
 decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

$$Cw = Cs*((Wr*1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) = 0.00 mg/l$$

Equation Set II - Determine the velocity of tha soil pore water (Vw)

Step 1 - Calculata the air filled porosity (f) in decimal percent.

Step 2 - Detarmine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

$$t = (f/Kf)*(L-(Hw-Hf))*(In(Hw + ((L-Hf)/(Hw-Hf)))) = 3,298$$
 seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

$$Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 28519$$
 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the conteminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

$$Kd = Koc*foc*1E-6 = 18.3617$$
 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

$$Vc = Vw^{*}(1 + ((Bd^{*}Kd)/ø)) = 422$$
 ft/year

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

$$Tc = 365 \text{ day/yr}^{\bullet}((L/30.48\text{cm/ft})/Vc) = 2.58 \text{ days}$$

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.

$$Cp = 10^{(log (Crsbl) + ((Tc/2.3)^{(0.693/t1/2)))} = 1.69$$
 mg/l

COC concentration in soil pore water (Cp) is greater than Crsbl, therefore the SSTL must be calculated.

Equation Set V - Calculate the Site Specific Target Level (SSTL) for the COC in soil.

Csstl for IAPHTHALENE =
$$Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+8d)) = \underline{ 250.692729} mg/kg$$
 in soil

PREPARED 8Y:_____

Date

CHECKED BY:

10/24/99

IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)											
Site Data											
SITE ID # FACILITY NAME	01089 Site 14, Quarters S		Charleston	-							
Instructions											
Provide results, separately, for each constituent in the worst case soil analysis.											
Data											
List Constituent:	NAPHTHALENE										
(BTEX, Napth.)							Table				
Bioremediation "ha	alf-life"	48	days	t 1/2			1				
Soil/water partition	ing coefficient	1543	ml/g	K oc			1				
Results					Equation	Cten					
					Equation Set	Sieh					
Total Organic Cart	bon Content	0.012	2 decimal %	f cs	1	1					
Leachate Concent	ration		3 mg/l	C w	l	2					
Air Filled Porosity			0 decimal %	f		1					
Infiltration Rate Tin	ne		8 seconds	t V.w	II II	2					
Velocity of Water Soil/Water Distribu	tion Coefficient		9_ft/year 6 ml/g	V w K d	 	3 1					
Contaminant Perce			<u>o</u> m⊬g 2 ft/year	V c		2					
Time to Reach Gro			4 days	Tc	IV	1					
	ching Groundwater		<u>2</u> mg/l	Ср	IV	2					
Site Specific Targe	•	250.692	~	C sstl	V						
Conclusions						_					
Concidatoria			_								
Does concentration	NO		,								
Risk of Human Exposure due to contaminated soil.											
		YES	X		_NO						
					Page	6 of 6	Pages				
	IN CITIL CO	DICK I		<u> </u>							
	1M-2110 27	ソル スパンア ュ	EVALUATIO	JN							